Ruijuan Qu

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1745628/publications.pdf
Version: 2024-02-01

Influence of anions on ozonation of bisphenol AF: Kinetics, reaction pathways, and toxicity
assessment. Chemosphere, 2022, 286, 131864.

Efficient photocatalytic degradation of PFOA in N -doped $\ln 2 \mathrm{O} 3 /$ simulated sunlight irradiation system

6 Photochemical transformation of hexachlorobenzene (HCB) in solid-water system: Kinetics, mechanism and toxicity evaluation. Chemosphere, 2022, 295, 133907.

19	Experimental and quantum chemical study on the transformation behavior of bisphenol S by radical-driven persulfate oxidation. Environmental Science: Water Research and Technology, 2021, 8, 116-126.	1.2	2
20	Visible light and fulvic acid assisted generation of Mn (III) to oxidize bisphenol A : The effect of tetrabromobisphenol A. Water Research, 2020, 169, 115273.	5.3	42
21	Kinetics and mechanism analysis for the photodegradation of PFOA on different solid particles. Chemical Engineering Journal, 2020, 383, 123115.	6.6	15
22	Oxidative Oligomerization of Phenolic Endocrine Disrupting Chemicals Mediated by Mn(III)-L Complexes and the Role of Phenoxyl Radicals in the Enhanced Removal: Experimental and Theoretical Studies. Environmental Science \& Technology, 2020, 54, 1573-1582.	4.6	31
23	Effects of common inorganic anions on the ozonation of polychlorinated diphenyl sulfides on silica gel: Kinetics, mechanisms, and theoretical calculations. Water Research, 2020, 186, 116358.	5.3	42
24	Removal of 4-chlorophenol, bisphenol A and nonylphenol mixtures by aqueous chlorination and formation of coupling products. Chemical Engineering Journal, 2020, 402, 126140.	6.6	35
25	Enhanced oxidative degradation of decabromodiphenyl ether in soil by coupling Fenton-persulfate processes: Insights into degradation products and reaction mechanisms. Science of the Total Environment, 2020, 737, 139777.	3.9	16

Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2:
26 Kinetics, degradation products, and reaction pathways. Chemical Engineering Journal, 2020, 398,
125357.

Alumina-mediated photocatalytic degradation of hexachlorobenzene in aqueous system: Kinetics and
mechanism. Chemosphere, 2020, 257, 127256.

Fe-Activated Peroxymonosulfate Enhances the Degradation of Dibutyl Phthalate on Ground Quartz
Sand. Environmental Science \& Technology, 2020, 54, 9052-9061.
Photodegradation of polychlorinated diphenyl sulïndes (PCDPSs) under simulated solar light
irradiation: Kinetics, mechanism, and density functional theory calculations. Journal of Hazardous
Materials, 2020, 398, 122876.

30 KMnO4-mediated reactions for hexachlorophene in aqueous solutions: Direct oxidation, self-coupling, and cross-coupling. Chemosphere, 2020, 259, 127422.
$4.2 \quad 8$
Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water
matrix effects, degradation products and reaction pathways. Chemosphere, 2019, 237, 124484.
Photodegradation of decabromodiphenyl ethane (DBDPE) adsorbed on silica gel in aqueous solution:
Kinetics, products, and theoretical calculations. Chemical Engineering Journal, 2019, 375, 121918.
6.6

The photodegradation of 1,3,6,8-tetrabromocarbazole in n-hexane and in solid-mediated aqueous
system: Kinetics and transformation mechanisms. Chemical Engineering Journal, 2019, 375, 121986.
$6.6 \quad 24$

Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from
34 decachlorobiphenyl (PCB-209) on solids/air interface. Journal of Hazardous Materials, 2019, 378,
6.5

20
120758.

Formation of hydroxylated derivatives and coupling products from the photochemical
35 transformation of polyfluorinated dibenzo-p-dioxins (PFDDs) on silica surfaces. Chemosphere, 2019,
4.2

231, 72-81.
Mechanistic insights into the reactivity of Ferrate (VI) with phenolic compounds and the formation of
coupling products. Water Research, 2019, 158, 338-349.

37	Kinetics and mechanism of the oxidative degradation of parathion by Ferrate(VI). Chemical Engineering Journal, 2019, 365, 142-152.	6.6	49
38	Photodegradation of polychlorinated diphenyl sulfides mediated by reactive oxygen species on silica gel. Chemical Engineering Journal, 2019, 359, 1056-1064.	6.6	27
39	Formation of perfluorocarboxylic acids from photodegradation of tetrahydroperfluorocarboxylic acids in water. Science of the Total Environment, 2019, 655, 598-606.	3.9	5
40	Effective degradation of fenitrothion by zero-valent iron powder (FeO) activated persulfate in aqueous solution: Kinetic study and product identification. Chemical Engineering Journal, 2019, 358, 1479-1488.	6.6	108
41	Removal of the UV Filter Benzophenone-2 in Aqueous Solution by Ozonation: Kinetics, Intermediates, Pathways and Toxicity. Ozone: Science and Engineering, 2018, 40, 122-132.	1.4	18
42	Phototransformation of estrogens mediated by Mn (III), not by reactive oxygen species, in the presence of humic acids. Chemosphere, 2018, 201, 224-233.	4.2	41
43	The pH-dependent toxicity of triclosan to five aquatic organisms (Daphnia magna, Photobacterium) Tj and Pollution Research, 2018, 25, 9636-9646.	$\begin{gathered} 7843 \\ 2.7 \end{gathered}$	$\begin{gathered} B T / \\ 31 \end{gathered}$

44 Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. Chemosphere, 2018, 196, 95-104.

45	Degradation kinetics and transformation products of chlorophene by aqueous permanganate. Water Research, 2018, 138, 293-300.	5.3	62
46	Mechanism insights into the oxidative degradation of decabromodiphenyl ethane by potassium permanganate in acidic conditions. Chemical Engineering Journal, 2018, 332, 267-276.	6.6	50
47	Fe(VI)-Mediated Single-Electron Coupling Processes for the Removal of Chlorophene: A Combined Experimental and Computational Study. Environmental Science \& Technology, 2018, 52, 12592-12601.	4.6	53
48	Enhanced Removal of Chlorophene and $17 \hat{1}^{2}$-estradiol by Mn (III) in a Mixture Solution with Humic Acid: Investigation of Reaction Kinetics and Formation of Co-oligomerization Products. Environmental Science \& Technology, 2018, 52, 13222-13230.	4.6	63
49	Kinetics and mechanism insights into the photodegradation of hydroperfluorocarboxylic acids in aqueous solution. Chemical Engineering Journal, 2018, 348, 644-652.	6.6	35

50 Photodegradation of $17 \hat{1} 2$-estradiol on silica gel and natural soil by UV treatment. Environmental 3.7

833-843.

The OH -initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study. Chemosphere, 2017, 168, 10-17.
Catalytic degradation of 2-phenylbenzimidazole-5-sulfonic acid by peroxymonosulfate activated with61 nitrogen and sulfur co-doped CNTs-COOH loaded CuFe2O4. Chemical Engineering Journal, 2017, 307,6.6
95-104.
Photodegradation of Polyfluorinated Dibenzo-<i>p</i>-Dioxins in Organic Solvents: Experimental andTheoretical Studies. Environmental Science \& Technology, 2016, 50, 8128-8134.
Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to <i>Daphnia magna<|i>: The role of certain arsenic species. Environmental Toxicology and Chemistry, 2016, 35, 2.2 24 1852-1859.
The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined64 exposure to cadmium and perfluorooctane sulfonate at different pH values. Chemosphere, 2016, 152,4.229496-502.
65 Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with 286
nano-scaled magnetic CuFe 2 O 4 /MWCNTs. Chemical Engineering Journal, 2016, 301, 1-11. 6.6 6.6
Toxicity of Arsenic to <i>Photobacterium phosphoreum</i>, <i>Daphnia magna</i>, and <i>Danio 0.7 7 rerio<|i> at Different pH Levels. Clean - Soil, Air, Water, 2016, 44, 72-77.Experimental and theoretical insights into the photochemical decomposition of environmentally
5.3 78persistent perfluorocarboxylic acids. Water Research, 2016, 104, 34-43.

Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and
73
74

Responses of antioxidant defense system to polyfluorinated dibenzo-p-dioxins (PFDDs) exposure in
2.9

25
liver of freshwater fish Carassius auratus. Ecotoxicology and Environmental Safety, 2016, 126, 170-176.
Evaluation of single and joint toxicity of perfluorooctane sulfonate and zinc to Limnodrilus
74 hoffmeisteri : Acute toxicity, bioaccumulation and oxidative stress. Journal of Hazardous Materials,
6.5

2016, 301, 342-349.
40

Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction
1.1

Pathways and Toxicity Assessment. PLoS ONE, 2015, 10, e0139580.

Characterization of the thermolysis products of Nafion membrane: A potential source of
76 perfluorinated compounds in the environment. Scientific Reports, 2015, 5, 9859.
1.6

77
Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes
under different pH levels. Aquatic Toxicology, 2015, 160, 142-150.
$1.9 \quad 32$

Oxidative Degradation of Decabromodiphenyl Ether (BDE 209) by Potassium Permanganate: Reaction
78 Pathways, Kinetics, and Mechanisms Assisted by Density Functional Theory Calculations.
4.6

Environmental Science \& Technology, 2015, 49, 4209-4217.
Experimental investigation on the soil sorption properties and hydrophobicity of polymethoxylated,
polyhydroxylated diphenyl ethers and methoxylated-, hydroxylated-polychlorinated diphenyl ethers.
Chemosphere, 2015, 134, 84-90.

Degradation of flumequine in aqueous solution by persulfate activated with common methods and
80 polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. Water Research, 2015,
5.3

225 85, 1-10.

A comparative study on antioxidant status combined with integrated biomarker response
in i\rangle Carassius auratus < $/ \mathrm{i}\rangle$ fish exposed to nine phthalates. Environmental Toxicology, 2015
1125-1134.

Ozonation of indigo enhanced by carboxylated carbon nanotubes: Performance optimization,
degradation products, reaction mechanism and toxicity evaluation. Water Research, 2015, 68, 316-327.
5.3
83 Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and ItsCombustion Products. PLoS ONE, 2015, 10, e0128591.Biochemical biomarkers in liver and gill tissues of freshwater fish<i>Carassius84 auratus</i>following<i> in vivo</i>exposure to hexabromobenzene. Environmental Toxicology, 2014,2.1
Subacute oral toxicity of BDE-15, CDE-15, and HODE-15 in ICR male mice: assessing effects on hepatic 85 oxidative stress and metals status and ascertaining the protective role of vitamin E. Environmental 2.7

29

Science and Pollution Research, 2014, 21, 1924-1935.
Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus
86 following in vivo exposure to waterborne zinc under different pH values. Aquatic Toxicology, 2014,

Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl
ether and ethane, or their mixture. Ecotoxicology, 2013, 22, 1101-1110.
Comparative antioxidant status in freshwater fish Carassius auratus exposed to six current-use
brominated flame retardants: A combined experimental and theoretical study. Aquatic Toxicology, 2013, 140-141, 314-323.

93	Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. Journal of Hazardous Materials, 2013, 262, 288-296.	6.5
94	Experimental and QSPR study of sorption properties of polychlorinated diphenyl sulfides (PCDPSs) in Yangtze River plain soil. Geoderma, 2013, 193-194, 140-148.	2.3

Synthesis and physicochemical properties of polyhydroxylated diphenyl ethers. Thermochimica Acta, 2013, 568, 1-12.

96 A Comprehensive Study on Infrared Spectra of 2-Hydroxyxanthone. Spectroscopy Letters, 2012, 45, 240-245.Polyhydroxylated Anthraquinones. Journal of Chemical \& Engineering Data, 2012, 57, 2442-2455.

Synthesis and QSPR study on environment-related properties of polychlorinated diphenyl sulfides (PCDPSs). Chemosphere, 2012, 88, 844-854.

The effect of hydroxyl groups on the stability and thermodynamic properties of polyhydroxylated xanthones as calculated by density functional theory. Thermochimica Acta, 2012, 527, 99-111.

