
Dayami Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1745577/publications.pdf Version: 2024-02-01

DAVAMILODEZ

#	Article	IF	CITATIONS
1	Identification of Novel Proteins Interacting with Proprotein Convertase Subtilisin/Kexin 9. International Journal of Biomedical Investigation, 2020, 3, 1-17.	0.7	5
2	. Identification of Proteins Interacting with PCSK9 Using a Protoarray Human Protein Microarray. International Journal of Biomedical Investigation, 2019, 2, 1-7.	0.7	0
3	Preparation of a Functional Rat LDL Receptor Minigene. International Journal of Biomedical Investigation, 2019, 2, .	0.7	0
4	Hypercholesterolemia: The role of PCSK9. Archives of Biochemistry and Biophysics, 2017, 625-626, 39-53.	3.0	45
5	Atorvastatin and lovastatin, but not pravastatin, increased cellular complex formation between PCSK9 and the LDL receptor in human hepatocyte-like C3A cells. Biochemical and Biophysical Research Communications, 2017, 492, 103-108.	2.1	3
6	Having excess levels of PCSK9 is not sufficient to induce complex formation between PCSK9 and the LDL receptor. Archives of Biochemistry and Biophysics, 2014, 545, 124-132.	3.0	14
7	Distribution of the LDL receptor within clathrin-coated pits and caveolae in rat and human liver. Biochemical and Biophysical Research Communications, 2014, 445, 422-427.	2.1	12
8	Using in vivo electroporation to identify hepatic LDL receptor promoter elements and transcription factors mediating activation of transcription by T3. Applied & Translational Genomics, 2012, 1, 30-36.	2.1	3
9	Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Archives of Biochemistry and Biophysics, 2009, 482, 77-82.	3.0	68
10	Diabetes alters LDL receptor and PCSK9 expression in rat liver. Archives of Biochemistry and Biophysics, 2008, 470, 111-115.	3.0	45
11	Inhibition of squalene synthase upregulates PCSK9 expression in rat liver. Archives of Biochemistry and Biophysics, 2008, 470, 116-119.	3.0	16
12	Lauric acid dependent enhancement in hepatic SCPx protein requires an insulin deficient environment. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 78, 131-135.	2.2	0
13	PCSK9: An enigmatic protease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 184-191.	2.4	54
14	Purified human chorionic gonadotropin induces apoptosis in breast cancer. Molecular Cancer Therapeutics, 2008, 7, 2837-2844.	4.1	31
15	Inhibition of PCSK9 as a Novel Strategy for the Treatment of Hypercholesterolemia. Drug News and Perspectives, 2008, 21, 323.	1.5	25
16	Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1216-1225.	2.4	104
17	Activation of the SCPx promoter in mouse adrenocortical Y1 cells. Biochemical and Biophysical Research Communications, 2007, 357, 549-553.	2.1	3
18	Characterization of the rat LDL receptor 5′-flanking region. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 492-500.	2.4	9

Dayami Lopez

#	Article	IF	CITATIONS
19	Estrogen regulation of the scavenger receptor class B gene: Anti-atherogenic or steroidogenic, is there a priority?. Molecular and Cellular Endocrinology, 2006, 247, 22-33.	3.2	31
20	Activation of the rat scavenger receptor class B type I gene by PPARα. Molecular and Cellular Endocrinology, 2006, 251, 67-77.	3.2	28
21	Selective Compensatory Induction of Hepatic HMG-CoA Reductase in Response to Inhibition of Cholesterol Absorption. Experimental Biology and Medicine, 2006, 231, 559-565.	2.4	19
22	Peroxisome proliferator-activated receptor α induces rat sterol carrier protein x promoter activity through two peroxisome proliferator-response elements. Molecular and Cellular Endocrinology, 2003, 205, 169-184.	3.2	15
23	Estrogen Activates the High-Density Lipoprotein Receptor Gene via Binding to Estrogen Response Elements and Interaction with Sterol Regulatory Element Binding Protein-1A. Endocrinology, 2002, 143, 2155-2168.	2.8	80
24	Repression of the Steroidogenic Acute Regulatory Gene by the Multifunctional Transcription Factor Yin Yang 1. Endocrinology, 2002, 143, 1085-1096.	2.8	34
25	Transcriptional repression of the rat steroidogenic acute regulatory (StAR) protein gene by the AP-1 family member c-Fos. Molecular and Cellular Endocrinology, 2002, 188, 161-170.	3.2	83
26	Repression of the Steroidogenic Acute Regulatory Gene by the Multifunctional Transcription Factor Yin Yang 1. Endocrinology, 2002, 143, 1085-1096.	2.8	3
27	Estrogen Activates the High-Density Lipoprotein Receptor Gene via Binding to Estrogen Response Elements and Interaction with Sterol Regulatory Element Binding Protein-1A. Endocrinology, 2002, 143, 2155-2168.	2.8	24
28	Characterization of a Steroidogenic Factor-1-Binding Site Found in Promoter of Sterol Carrier Protein-2 Gene. Endocrine, 2001, 14, 253-262.	2.2	15
29	Effects of Mutating Different Steroidogenic Factor-1 Protein Regions on Gene Regulation. Endocrine, 2001, 14, 353-362.	2.2	17
30	DAX-1 Represses the High-Density Lipoprotein Receptor Through Interaction with Positive Regulators Sterol Regulatory Element-Binding Protein-1a and Steroidogenic Factor-1. Endocrinology, 2001, 142, 5097-5106.	2.8	25
31	Yin Yang 1 Protein Negatively Regulates High-Density Lipoprotein Receptor Gene Transcription by Disrupting Binding of Sterol Regulatory Element Binding Protein to the Sterol Regulatory Element1. Endocrinology, 2001, 142, 49-58.	2.8	28
32	Sterol Regulatory Element Binding Protein-1a Regulation of the Steroidogenic Acute Regulatory Protein Gene*. Endocrinology, 2001, 142, 1525-1533.	2.8	68
33	Yin Yang 1 Protein Negatively Regulates High-Density Lipoprotein Receptor Gene Transcription by Disrupting Binding of Sterol Regulatory Element Binding Protein to the Sterol Regulatory Element. Endocrinology, 2001, 142, 49-58.	2.8	11
34	DAX-1 Represses the High-Density Lipoprotein Receptor Through Interaction with Positive Regulators Sterol Regulatory Element-Binding Protein-1a and Steroidogenic Factor-1. Endocrinology, 2001, 142, 5097-5106.	2.8	11
35	Sterol Regulatory Element Binding Protein-1a Regulation of the Steroidogenic Acute Regulatory Protein Gene. Endocrinology, 2001, 142, 1525-1533.	2.8	22
36	Sterol Regulatory Element-Binding Protein-1a Binds to cis Elements in the Promoter of the Rat High Density Lipoprotein Receptor SR-BI Gene1. Endocrinology, 1999, 140, 5669-5681.	2.8	108

Dayami Lopez

#	Article	IF	CITATIONS
37	Steroidogenic Factor-1 Mediates Cyclic 3′,5′-Adenosine Monophosphate Regulation of the High Density Lipoprotein Receptor*. Endocrinology, 1999, 140, 3034-3044.	2.8	62
38	Steroidogenic Factor-1 Mediates Cyclic 3',5'-Adenosine Monophosphate Regulation of the High Density Lipoprotein Receptor. Endocrinology, 1999, 140, 3034-3044.	2.8	20
39	Effects of I-Triiodothyronine and the Thyromimetic L-94901 on Serum Lipoprotein Levels and Hepatic Low-Density Lipoprotein Receptor, 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, and Apo A-I Gene Expression. Biochemical Pharmacology, 1998, 56, 121-129.	4.4	87
40	Compensatory Responses to Inhibition of Hepatic Squalene Synthase. Archives of Biochemistry and Biophysics, 1998, 351, 159-166.	3.0	19
41	Effects of 15-Oxa-32-vinyl-lanost-8-ene-3Î ² ,32 diol on the Expression of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Low Density Lipoprotein Receptor in Rat Liver. Archives of Biochemistry and Biophysics, 1998, 357, 259-264.	3.0	10
42	Atorvastatin action involves diminished recovery of hepatic HMG-CoA reductase activity. Journal of Lipid Research, 1998, 39, 75-84.	4.2	61
43	3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Inhibitors Unmask Cryptic Regulatory Mechanisms. Archives of Biochemistry and Biophysics, 1997, 343, 118-122.	3.0	23
44	Inhibitors of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Unmask Transcriptional Regulation of Hepatic Low-Density Lipoprotein Receptor Gene Expression by Dietary Cholesterol. Archives of Biochemistry and Biophysics, 1997, 344, 215-219.	3.0	10
45	Increased expression of low-density lipoprotein receptors in a Smith-Lemli-Opitz infant with elevated bilirubin levels. American Journal of Medical Genetics Part A, 1997, 68, 294-299.	2.4	27
46	Inhibitors of Cholesterol Biosynthesis Increase Hepatic Low-Density Lipoprotein Receptor Protein Degradation. Archives of Biochemistry and Biophysics, 1996, 325, 242-248.	3.0	103
47	Transcriptional Regulation of Rat Hepatic Low-Density Lipoprotein Receptor and Cholesterol 7α Hydroxylase by Thyroid Hormone, Archives of Biochemistry and Biophysics, 1995, 323, 404-408	3.0	82