Neera Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1745373/publications.pdf

Version: 2024-02-01

		304743	302126
70	1,766 citations	22	39
papers	citations	h-index	g-index
70	70	70	1880
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bacteria and fungi mediated degradation of poly aromatic hydrocarbons and effect of surfactant Tween-80. International Journal of Environmental Analytical Chemistry, 2024, 104, 27-42.	3.3	7
2	Effect of surfactant on degradation of <i>Aspergillus</i> sp. and <i>Trichoderma</i> sp. mediated crude oil. International Journal of Environmental Analytical Chemistry, 2023, 103, 1667-1680.	3.3	8
3	Azoxystrobin and imidacloprid degradation in biobed setup under laboratory conditions. International Journal of Environmental Analytical Chemistry, 2023, 103, 2292-2299.	3.3	6
4	Leaching behaviour of atrazine and fipronil in sugarcane trash ash mixed soils. International Journal of Environmental Analytical Chemistry, 2023, 103, 7494-7504.	3.3	1
5	Free and Immobilized Microbial Culture–Mediated Crude Oil Degradation and Microbial Diversity Changes Through Taxonomic and Functional Markers in a Sandy Loam Soil. Frontiers in Environmental Science, 2022, 9, .	3.3	6
6	Bio-polysaccharide composites mediated degradation of polyaromatic hydrocarbons in a sandy soil using free and immobilized consortium of Kocuria rosea and Aspergillus sydowii. Environmental Science and Pollution Research, 2022, 29, 80005-80020.	5. 3	6
7	Increased Sorption of Atrazine and Fipronil in the Sugarcane Trash Ash–Mixed Soils of Northern India. Journal of Soil Science and Plant Nutrition, 2021, 21, 1263-1276.	3.4	10
8	Evaluating ash and biochar mixed biomixtures for atrazine and fipronil degradation. Environmental Technology and Innovation, 2021, 23, 101745.	6.1	9
9	Sorption mechanisms of pesticides removal from effluent matrix using biochar: Conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments. Journal of Environmental Management, 2021, 295, 113104.	7.8	27
10	Effect of deashing on physico-chemical properties of wheat and rice straw biochars and potential sorption of pyrazosulfuron-ethyl. Arabian Journal of Chemistry, 2020, 13, 1247-1258.	4.9	36
11	Ash and biochar mixed biomixtures for adsorption of atrazine and fipronil in the biopurification system. International Journal of Environmental Analytical Chemistry, 2020, , 1-16.	3.3	3
12	Effect of crop residue ashes on sorption behavior of herbicides used in the succeeding crop in Indian soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 630-645.	1.5	13
13	Crop residue ashes reduce leaching, persistence and bioavailability of sulfosulfuron and pretilachlor used in the succeeding crop. Soil Research, 2020, 58, 551.	1.1	10
14	Biochars mediated degradation, leaching and bioavailability of pyrazosulfuron-ethyl in a sandy loam soil. Geoderma, 2019, 334, 63-71.	5.1	19
15	Chemical Degradation of Sulfosulfuron in Aqueous Suspension of Rice and Wheat Straw Ashes. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 484-489.	2.7	7
16	Parameters affecting azoxystrobin and imidacloprid degradation in biobed substrates in the North Indian tropical environment. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 843-857.	1.5	7
17	Rice and wheat straw ashes: Characterization and modeling of pretilachlor sorption kinetics and adsorption isotherm. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 303-312.	1.5	15
18	Herbicide Residue Research in North–Western India. Environmental Chemistry for A Sustainable World, 2019, , 371-413.	0.5	2

#	Article	IF	CITATIONS
19	Kinetics and isotherm modeling of azoxystrobin and imidacloprid retention in biomixtures. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 118-128.	1.5	6
20	In-vitro evaluation of rice and wheat straw biochars' effect on pyrazosulfuron-ethyl degradation and microbial activity in rice-planted soil. Soil Research, 2018, 56, 579.	1.1	2
21	Alginate immobilized enrichment culture for atrazine degradation in soil and water system. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 229-236.	1.5	10
22	Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems. International Journal of Hygiene and Environmental Health, 2017, 220, 637-645.	4.3	64
23	Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 671-682.	1.5	20
24	Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Science of the Total Environment, 2017, 577, 376-385.	8.0	244
25	Effect of fly ash amendment on metolachlor and atrazine degradation and microbial activity in two soils. Environmental Monitoring and Assessment, 2016, 188, 482.	2.7	8
26	Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture. Environmental Monitoring and Assessment, 2016, 188, 142.	2.7	37
27	Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of <i>Eucalyptus tereticornis </i> i>L Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 192-203.	1.5	37
28	Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 24-34.	1,5	10
29	Adsorption and Leaching Behaviour of Bispyribac-Sodium in Soils. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 125-128.	2.7	15
30	Effect of wheat and rice straw biochars on pyrazosulfuron-ethyl sorption and persistence in a sandy loam soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2015, 50, 463-472.	1.5	26
31	Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by 13C-NMR and IR spectroscopy. Environmental Monitoring and Assessment, 2015, 187, 620.	2.7	15
32	Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal. Environmental Science and Pollution Research, 2015, 22, 3876-3885.	5. 3	55
33	Effect of fly ash on metsulfuron-methyl sorption and leaching in soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 366-373.	1.5	5
34	Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil. Environmental Monitoring and Assessment, 2013, 185, 2951-2960.	2.7	16
35	Reduced downward mobility of metribuzin in fly ash-amended soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 587-592.	1.5	5
36	Degradation of atrazine in mineral salts medium and soil using enrichment culture. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 860-868.	1.5	16

#	Article	IF	Citations
37	Effect of fly ash on persistence, mobility and bio-efficacy of metribuzin and metsulfuron-methyl in crop fields. Ecotoxicology and Environmental Safety, 2013, 97, 236-241.	6.0	8
38	Degradation behaviour of pyrazosulfuron-ethyl in water as affected by pH. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 266-271.	1.5	6
39	Adsorption–desorption of metolachlor and atrazine in Indian soils: effect of fly ash amendment. Environmental Monitoring and Assessment, 2013, 185, 1833-1845.	2.7	18
40	Effect of fly ash amendment on persistence of metribuzin in soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 108-113.	1.5	7
41	Managing metolachlor and atrazine leaching losses using lignite fly ash. Ecotoxicology and Environmental Safety, 2012, 84, 243-248.	6.0	14
42	Sorption of metolachlor and atrazine in fly ash amended soils: Comparison of optimized isotherm models. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 718-727.	1.5	18
43	Effect of fly ash on sorption behavior of metribuzin in agricultural soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 89-98.	1.5	12
44	Sorption-desorption behavior of metsulfuron-methyl and sulfosulfuron in soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 168-174.	1.5	22
45	Persistence of Azoxystrobin in/on Grapes and Soil in Different Grapes Growing Areas of India. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 90-94.	2.7	20
46	Translocation and degradation of pyrazosulfuronâ€ethyl in rice soil. Pest Management Science, 2011, 67, 1451-1456.	3.4	10
47	Effect of soil organic matter chemistry on sorption of trinitrotoluene and 2,4-dinitrotoluene. Journal of Hazardous Materials, 2010, 173, 343-348.	12.4	31
48	Effect of moisture and compost on fate of azoxystrobin in soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45, 676-681.	1.5	12
49	Effect of Biocompost-Amendment on Degradation of Triazoles Fungicides in Soil. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 120-123.	2.7	14
50	Leaching behaviour of azoxystrobin and metabolites in soil columns. Pest Management Science, 2009, 65, 1009-1014.	3.4	27
51	Adsorption of herbicides on coal fly ash from aqueous solutions. Journal of Hazardous Materials, 2009, 168, 233-237.	12.4	89
52	Effect of Organic Manure on Sorption and Degradation of Azoxystrobin in Soil. Journal of Agricultural and Food Chemistry, 2009, 57, 632-636.	5.2	72
53	Organo-mineral interactions mask the true sorption potential of biochars in soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 214-219.	1.5	22
54	Sorption–Desorption of Trinitrotoluene in Soils: Effect of Saturating Metal Cations. Bulletin of Environmental Contamination and Toxicology, 2008, 80, 443-446.	2.7	9

#	Article	IF	CITATIONS
55	Biocompost from sugar distillery effluent: effect on metribuzin degradation, sorption and mobility. Pest Management Science, 2008, 64, 1057-1062.	3.4	21
56	Mobility and degradation of trinitrotoluene/metabolites in soil columns: Effect of soil organic carbon content. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 682-693.	1.7	14
57	Degradation of trinitrotoluene in contaminated soils as affected by its initial concentrations and its binding to soil organic matter fractions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 348-356.	1.7	4
58	Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere, 2007, 66, 630-637.	8.2	106
59	Metribuzin mobility in soil columns as affected by urea fertiliser. Pest Management Science, 2006, 62, 402-406.	3.4	5
60	Reduced Downward Mobility of Metolachlor and Metribuzin from Surfactant-Modified Clays. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 17-29.	1.5	10
61	Mobility of four triazole fungicides in two Indian soils. Pest Management Science, 2005, 61, 191-196.	3.4	27
62	Factors Affecting Triadimefon Degradation in Soils. Journal of Agricultural and Food Chemistry, 2005, 53, 70-75.	5.2	37
63	Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere, 2004, 56, 257-263.	8.2	80
64	Bioavailability of an Organophosphorus Pesticide, Fenamiphos, Sorbed on an Organo Clay. Journal of Agricultural and Food Chemistry, 2003, 51, 2653-2658.	5 . 2	77
65	Persistence of Phorate in Soils: Role of Moisture, Temperature, Preexposure and Microorganisms. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 723-735.	1.5	17
66	Organic Manure and Urea Effect on Metolachlor Transport through Packed Soil Columns. Journal of Environmental Quality, 2003, 32, 1743-1749.	2.0	48
67	Sorption Behavior of Triazole Fungicides in Indian Soils and Its Correlation with Soil Properties. Journal of Agricultural and Food Chemistry, 2002, 50, 6434-6439.	5. 2	64
68	Movement of metolachlor and terbuthylazine in core and packed soil columns. Chemosphere, 2002, 47, 409-415.	8.2	39
69	SORPTION BEHAVIOR OF METOLACHLOR, ISOPROTURON, AND TERBUTHYLAZINE IN SOILS. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 397-407.	1.5	22
70	Ash and biochar mixed biomixtures to degrade co-applied atrazine and fipronil in bio-augmented biobeds. International Journal of Environmental Analytical Chemistry, 0, , 1-12.	3.3	1