Xijiang Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1745313/publications.pdf Version: 2024-02-01

		19636	21521
123	13,363	61	114
papers	citations	h-index	g-index
105	105	105	0576
125	125	125	9576
all docs	docs citations	times ranked	citing authors

XIIIANC HAN

#	Article	IF	CITATIONS
1	Shell Thickness-Dependent Microwave Absorption of Core–Shell Fe ₃ O ₄ @C Composites. ACS Applied Materials & Interfaces, 2014, 6, 12997-13006.	4.0	853
2	Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon, 2017, 111, 722-732.	5.4	649
3	The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Applied Physics Letters, 2011, 98, .	1.5	597
4	Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. Journal of Materials Chemistry A, 2015, 3, 13426-13434.	5.2	560
5	Constructing Uniform Core–Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption. ACS Applied Materials & Interfaces, 2015, 7, 20090-20099.	4.0	424
6	Synthesis of Electromagnetic Functionalized Nickel/Polypyrrole Core/Shell Composites. Journal of Physical Chemistry B, 2008, 112, 10443-10448.	1.2	342
7	Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon, 2016, 98, 599-606.	5.4	278
8	MOFs-Derived Hollow Co/C Microspheres with Enhanced Microwave Absorption Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 8904-8913.	3.2	264
9	Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon, 2019, 145, 701-711.	5.4	262
10	Graphitic-C3N4-hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. Journal of Hazardous Materials, 2014, 268, 216-223.	6.5	254
11	Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 884-895.	5.2	253
12	Pea-like Fe/Fe ₃ C Nanoparticles Embedded in Nitrogen-Doped Carbon Nanotubes with Tunable Dielectric/Magnetic Loss and Efficient Electromagnetic Absorption. ACS Applied Materials & Interfaces, 2019, 11, 4268-4277.	4.0	246
13	Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). Journal of Alloys and Compounds, 2016, 681, 384-393.	2.8	237
14	Morphology-Controlled Synthesis and Electromagnetic Properties of Porous Fe ₃ O ₄ Nanostructures from Iron Alkoxide Precursors. Journal of Physical Chemistry C, 2011, 115, 12350-12357.	1.5	236
15	Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. Journal of Colloid and Interface Science, 2018, 514, 10-20.	5.0	235
16	Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Advanced Materials, 2021, 33, e2000086.	11,1	232
17	Controlled Synthesis and Morphology-Dependent Electromagnetic Properties of Hierarchical Cobalt Assemblies. Journal of Physical Chemistry C, 2010, 114, 14826-14830.	1.5	205
18	Controlled Synthesis of Hierarchical Nickel and Morphology-Dependent Electromagnetic Properties. Journal of Physical Chemistry C, 2010, 114, 3196-3203.	1.5	204

Xijiang Han

#	Article	IF	CITATIONS
19	Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. Journal of Materials Chemistry C, 2019, 7, 5037-5046.	2.7	202
20	Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports, 2013, 3, 2997.	1.6	194
21	S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts. ACS Applied Materials & Interfaces, 2017, 9, 398-405.	4.0	194
22	How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Letters, 2020, 5, 1083-1087.	8.8	193
23	The electromagnetic properties and microwave absorption of mesoporous carbon. Materials Chemistry and Physics, 2012, 135, 884-891.	2.0	185
24	Multifunctional polymer–metal nanocomposites via direct chemical reduction by conjugated polymers. Chemical Society Reviews, 2014, 43, 1349-1360.	18.7	184
25	Synthesis and Magnetic Properties of BaFe12O19 Hexaferrite Nanoparticles by a Reverse Microemulsion Technique. Journal of Physical Chemistry C, 2007, 111, 5866-5870.	1.5	177
26	Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chemical Communications, 2013, 49, 3389.	2.2	165
27	MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon, 2020, 157, 478-485.	5.4	165
28	Synthesis of Electromagnetic Functionalized Fe ₃ O ₄ Microspheres/Polyaniline Composites by Two-Step Oxidative Polymerization. Journal of Physical Chemistry B, 2012, 116, 9523-9531.	1.2	156
29	Heterogeneous Interface Induced the Formation of Hierarchically Hollow Carbon Microcubes against Electromagnetic Pollution. Small, 2020, 16, e2003407.	5.2	156
30	Synthesis and Characterization of Novel Coralloid Polyaniline/BaFe ₁₂ O ₁₉ Nanocomposites. Journal of Physical Chemistry C, 2007, 111, 12603-12608.	1.5	153
31	Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/Cu ₇ S ₄ /g-C ₃ N ₄ Ternary Heterostructures. ACS Applied Materials & Interfaces, 2018, 10, 20404-20411.	4.0	153
32	Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chemical Engineering Journal, 2019, 372, 312-320.	6.6	152
33	Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review. Nano-Micro Letters, 2021, 13, 208.	14.4	138
34	Microwave absorption enhancement of Fe ₃ O ₄ /polyaniline core/shell hybrid microspheres with controlled shell thickness. Journal of Applied Polymer Science, 2013, 130, 1909-1916.	1.3	134
35	Interfacially Engineered Sandwichâ€Like rGO/Carbon Microspheres/rGO Composite as an Efficient and Durable Microwave Absorber. Advanced Materials Interfaces, 2016, 3, 1500684.	1.9	131
36	Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Advances, 2013, 3, 12694.	1.7	124

#	Article	IF	CITATIONS
37	Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol A. Carbon, 2018, 137, 291-303.	5.4	124
38	Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. Journal of Materials Chemistry A, 2021, 9, 5086-5096.	5.2	124
39	Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. Journal of Materials Chemistry C, 2018, 6, 9615-9623.	2.7	118
40	Ultrasmall Mo ₂ C Nanoparticle-Decorated Carbon Polyhedrons for Enhanced Microwave Absorption. ACS Applied Nano Materials, 2018, 1, 5366-5376.	2.4	117
41	Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO ₂ nanomaterials. RSC Advances, 2014, 4, 47031-47038.	1.7	116
42	Synthesis of Electromagnetic Functionalized Barium Ferrite Nanoparticles Embedded in Polypyrrole. Journal of Physical Chemistry B, 2008, 112, 2775-2781.	1.2	111
43	Space-Confined Synthesis of Core–Shell BaTiO ₃ @Carbon Microspheres as a High-Performance Binary Dielectric System for Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 31182-31190.	4.0	110
44	Recent Advances in Conjugated Polymer-Based Microwave Absorbing Materials. Polymers, 2017, 9, 29.	2.0	107
45	Surfactant-Assisted Solvothermal Synthesis of Ba(CoTi) _{<i>x</i>} Fe _{12â^2<i>x</i>} O ₁₉ Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. Journal of Physical Chemistry C, 2010. 114. 19600-19606.	1.5	106
46	Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures. Journal of Materials Chemistry, 2011, 21, 2495-2501.	6.7	106
47	Metal–Organic Frameworks Derived Interconnected Bimetallic Metaphosphate Nanoarrays for Efficient Electrocatalytic Oxygen Evolution. Advanced Functional Materials, 2020, 30, 1910498.	7.8	104
48	Highly Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Platforms Based on Silver Nanostructures Fabricated on Polyaniline Membrane Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 2752-2756.	4.0	103
49	Improved Interface Charge Transfer and Redistribution in CuO oOOH pâ€n Heterojunction Nanoarray Electrocatalyst for Enhanced Oxygen Evolution Reaction. Advanced Science, 2021, 8, e2103314.	5.6	100
50	Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon, 2020, 168, 404-414.	5.4	97
51	Solvent-Free Synthesis of Ultrafine Tungsten Carbide Nanoparticles-Decorated Carbon Nanosheets for Microwave Absorption. Nano-Micro Letters, 2020, 12, 153.	14.4	93
52	Bifunctional Nitrogen-Doped Microporous Carbon Microspheres Derived from Poly(<i>o</i> -methylaniline) for Oxygen Reduction and Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 3601-3608.	4.0	89
53	Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. Journal of Materials Science, 2017, 52, 6349-6361.	1.7	87
54	Rational design and synthesis of SnO 2 -encapsulated α -Fe 2 O 3 nanocubes as a robust and stable photo-Fenton catalyst. Applied Catalysis B: Environmental, 2017, 210, 23-33.	10.8	80

#	Article	IF	CITATIONS
55	Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. Journal of Colloid and Interface Science, 2018, 528, 174-183.	5.0	80
56	Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon, 2021, 174, 673-682.	5.4	78
57	A crystalline–amorphous Ni–Ni(OH) ₂ core–shell catalyst for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 23323-23329.	5.2	77
58	Facile Fabrication of Homogeneous 3D Silver Nanostructures on Gold-Supported Polyaniline Membranes as Promising SERS Substrates. Langmuir, 2010, 26, 8882-8886.	1.6	76
59	Prussian Blue Microcrystals with Morphology Evolution as a High-Performance Photo-Fenton Catalyst for Degradation of Organic Pollutants. ACS Applied Materials & Interfaces, 2019, 11, 1174-1184.	4.0	70
60	Preparation and microwave absorption properties of Ni–B alloy-coated Fe3O4 particles. Journal of Alloys and Compounds, 2008, 464, 352-356.	2.8	65
61	Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties. Applied Surface Science, 2018, 427, 594-602.	3.1	63
62	Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38401-38408.	4.0	61
63	Inâ€Situ Surfaceâ€Enhanced Raman Spectroscopy Study of Plasmonâ€Driven Catalytic Reactions of 4â€Nitrothiophenol under a Controlled Atmosphere. ChemCatChem, 2015, 7, 1004-1010.	1.8	60
64	Synthesis and characterization of Co–Sn substituted barium ferrite particles by a reverse microemulsion technique. Materials Research Bulletin, 2011, 46, 643-648.	2.7	59
65	FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. Journal of Materials Science, 2017, 52, 13636-13649.	1.7	59
66	Amino Acid-Assisted Synthesis of Hierarchical Silver Microspheres for Single Particle Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 10007-10012.	1.5	55
67	Facile Synthesis of Polyanilineâ€Polypyrrole Nanofibers for Application in Chemical Deposition of Metal Nanoparticles. Macromolecular Rapid Communications, 2008, 29, 1392-1397.	2.0	54
68	Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synthetic Metals, 2010, 160, 2191-2196.	2.1	54
69	Homogeneous Metal Nitrate Hydroxide Nanoarrays Grown on Nickel Foam for Efficient Electrocatalytic Oxygen Evolution. Small, 2018, 14, e1803783.	5.2	50
70	Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. Journal of Materials Science and Technology, 2021, 93, 7-16.	5.6	50
71	Template synthesis of nitrogen-doped carbon nanocages–encapsulated carbon nanobubbles as catalyst for activation of peroxymonosulfate. Inorganic Chemistry Frontiers, 2018, 5, 1849-1860.	3.0	49
72	Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Research, 2018, 11, 2573-2585.	5.8	47

#	Article	IF	CITATIONS
73	Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. Materials Letters, 2008, 62, 1305-1308.	1.3	46
74	Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 2010, 20, 7222.	6.7	46
75	Fabrication of Thorny Au Nanostructures on Polyaniline Surfaces for Sensitive Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2013, 5, 49-54.	4.0	46
76	Ultrafast Surfaceâ€Plasmonâ€Induced Photodimerization of <i>p</i> â€Aminothiophenol on Ag/TiO ₂ Nanoarrays. ChemCatChem, 2016, 8, 1819-1824.	1.8	45
77	A review on recent advances in carbon-based dielectric system for microwave absorption. Journal of Materials Science, 2021, 56, 10782-10811.	1.7	45
78	Ultrafine CoO nanoparticles as an efficient cocatalyst for enhanced photocatalytic hydrogen evolution. Nanoscale, 2019, 11, 15633-15640.	2.8	44
79	Synthesis and characterization of nanostructured polypyrroles: Morphology-dependent electrochemical responses and chemical deposition of Au nanoparticles. Polymer, 2009, 50, 2624-2629.	1.8	41
80	Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale, 2010, 2, 1436.	2.8	41
81	Facile Synthesis and Electrical Properties of Silver Wires through Chemical Reduction by Polyaniline. Journal of Physical Chemistry C, 2010, 114, 22147-22154.	1.5	41
82	Heteroatom-Doped Carbon Nanostructures Derived from Conjugated Polymers for Energy Applications. Polymers, 2016, 8, 366.	2.0	41
83	Anchoring porous carbon nanoparticles on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution. Journal of Materials Chemistry A, 2021, 9, 22489-22500.	5.2	38
84	γ-irradiation induced one-step synthesis of electromagnetic functionalized reduced graphene oxide–Ni nanocomposites. RSC Advances, 2014, 4, 30467-30470.	1.7	34
85	Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. Journal of Materials Science, 2017, 52, 4399-4411.	1.7	34
86	Oxygen Vacancy-Induced Construction of CoO/h-TiO ₂ Z-Scheme Heterostructures for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 28945-28955.	4.0	34
87	Preparation and electromagnetic properties of multiwalled carbon nanotubes/Ni composites by Î ³ -irradiation technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 167, 1-5.	1.7	33
88	Solvent-free synthesis of hexagonal barium ferrite (BaFe12O19) particles. Journal of Materials Science, 2010, 45, 2442-2448.	1.7	33
89	Pearson's principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution. Materials Chemistry Frontiers, 2018, 2, 1523-1528.	3.2	33
90	Precursor-directed synthesis of quasi-spherical barium ferrite particles with good dispersion and magnetic properties. CrystEngComm, 2013, 15, 808-815.	1.3	31

#	Article	IF	CITATIONS
91	Differential shrinkage induced formation of yolk-shell carbon microspheres toward enhanced microwave absorption. Applied Physics Letters, 2017, 111, .	1.5	30
92	Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation. Journal of Materials Chemistry A, 2021, 9, 23140-23148.	5.2	26
93	Hollow transition metal hydroxide octahedral microcages for single particle surface-enhanced Raman spectroscopy. Inorganic Chemistry Frontiers, 2019, 6, 2318-2324.	3.0	24
94	Controlled growth of monocrystalline rutile nanoshuttles in anatase TiO2 particles under mild conditions. CrystEngComm, 2009, 11, 564.	1.3	21
95	Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement. Physical Chemistry Chemical Physics, 2014, 16, 22867-22873.	1.3	21
96	Field-Assisted Synthesis and Electromagnetic Properties of Aligned Magnetic Nanostructures by Î ³ -Irradiation Induced Reduction. Journal of Physical Chemistry C, 2010, 114, 21214-21218.	1.5	18
97	Fabrication of PPy Nanosphere/rGO Composites via a Facile Self-Assembly Strategy for Durable Microwave Absorption. Polymers, 2018, 10, 998.	2.0	18
98	A review of recent advancements in Ni-related materials used for microwave absorption. Journal Physics D: Applied Physics, 2021, 54, 473003.	1.3	18
99	Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm, 2012, 14, 4952.	1.3	17
100	Magnetic and dielectric properties of barium titanate-coated barium ferrite. Journal of Alloys and Compounds, 2009, 476, 560-565.	2.8	15
101	Soft-chemical method for fabrication of SnO–TiO ₂ nanocomposites with enhanced photocatalytic activity. Journal of Materials Research, 2013, 28, 1862-1869.	1.2	15
102	In Situ Growth of Nitrogen-Doped Carbon Nanotubes Based on Hierarchical Ni@C Microspheres for High Efficiency Bisphenol A Removal through Peroxymonosulfate Activation. ACS Applied Materials & Interfaces, 2022, 14, 21371-21382.	4.0	15
103	In situ Raman monitoring of [2+2] cycloaddition of pyridine substituted olefins induced by visible laser. Chemical Communications, 2014, 50, 15631-15633.	2.2	13
104	Chemical deposition of Ag nanostructures on polypyrrole films as active SERS substrates. RSC Advances, 2014, 4, 7202.	1.7	13
105	Performance Vs Convenience of Magnetic Carbon-Metal Nanocomposites: A Low-Cost and Facile Citrate-Derived Strategy for Feco Alloy/Carbon Composites with High-Performance Microwave Absorption. Comments on Inorganic Chemistry, 2017, 37, 301-326.	3.0	13
106	SERS-active silver nanoparticle assemblies on branched Cu ₂ O crystals through controlled galvanic replacement. RSC Advances, 2014, 4, 53543-53546.	1.7	12
107	Galvanic replacement mediated synthesis of rGO–Mn ₃ O ₄ –Pt nanocomposites for the oxygen reduction reaction. RSC Advances, 2016, 6, 89124-89129.	1.7	12
108	High-efficient electromagnetic absorption and composites of carbon microspheres. Journal of Applied Physics, 2021, 130, .	1.1	12

#	Article	IF	CITATIONS
109	Response to "Comment on â€~The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material'―[Appl. Phys. Lett. 100, 046101 (2012)]. Applied Physics Letters, 2012, 100, 046102.	1.5	10
110	Fabrication of Hâ€TiO ₂ /CdS/Cu _{2â€<i>x</i>} S Ternary Heterostructures for Enhanced Photocatalytic Hydrogen Production. ChemistrySelect, 2017, 2, 2681-2686.	0.7	9
111	Surfactant-free synthesis and electromagnetic properties of Co–Ni–B composite particles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 211-217.	1.7	8
112	Interfacial synthesis of lollipop-like Au–polyaniline nanocomposites for catalytic applications. RSC Advances, 2016, 6, 81983-81988.	1.7	7
113	Solvothermal Synthesis and Magnetic Properties of La-Substituted Barium Ferrite. Chemistry Letters, 2012, 41, 209-211.	0.7	6
114	Metal nanoparticle catalyzed cyclobutane cleavage reaction. RSC Advances, 2015, 5, 100722-100724.	1.7	5
115	Inâ€Situ Raman Monitoring of Silver(I)â€Aided Laserâ€Driven Cleavage Reaction of Cyclobutane. ChemPhysChem, 2016, 17, 46-50.	1.0	4
116	TiO ₂ -loaded epoxy resin with improved electrical characteristics as promising insulating materials. Plastics, Rubber and Composites, 2020, 49, 179-186.	0.9	4
117	Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide. Chemistry Letters, 2014, 43, 871-873.	0.7	3
118	Fe3+-Exchanged Titanate Nanotubes: A New Kind of Highly Active Heterogeneous Catalyst for Friedel-Crafts Type Benzylation. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	2
119	Synthesis, Characterization and Photocatalytic Activity of Ag-doped TiO2 Film. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	0
120	Notice of Retraction: Reforms of fundamental chemistry experiment education in Research University. , 2010, , .		0
121	Notice of Retraction: Exploration and Practice of Innovative Education of Experimental Chemistry Teaching in Universities and Colleges. , 2011, , .		0
122	In situ SERS monitored photoactive yellow protein (PYP) chromophore model elimination, nano-catalyzed phenyl redox and I2 addition reactions. RSC Advances, 2016, 6, 111144-111147.	1.7	0
123	PREPARATION OF NANOPHASE B- NI (OH) ₂ POWDER FOR ELECTRODE MATERIALS., 2002, , .		Ο