
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1745155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in engineering hydrogels. Science, 2017, 356, .	12.6	1,836
2	Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie - International Edition, 2014, 53, 12320-12364.	13.8	1,447
3	Bioinks for 3D bioprinting: an overview. Biomaterials Science, 2018, 6, 915-946.	5.4	828
4	Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016, 106, 58-68.	11.4	727
5	Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016, 110, 45-59.	11.4	699
6	Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2293-E2302.	7.1	570
7	Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment. ACS Nano, 2013, 7, 2068-2077.	14.6	557
8	Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 2016, 105, 255-274.	13.7	537
9	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	2.5	507
10	Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 2017, 57, 1-25.	8.3	490
11	A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016, 8, 014101.	7.1	466
12	Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7, 8837.	3.3	407
13	Reduced Graphene Oxideâ€GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Small, 2016, 12, 3677-3689.	10.0	385
14	Extrusion Bioprinting of Shearâ€Thinning Gelatin Methacryloyl Bioinks. Advanced Healthcare Materials, 2017, 6, 1601451.	7.6	352
15	Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials, 2019, 190-191, 97-110.	11.4	345
16	Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release, 2014, 190, 82-93.	9.9	308
17	Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs. Advanced Functional Materials, 2017, 27, 1605352.	14.9	278
18	Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting. Advanced Materials, 2018, 30, e1800242.	21.0	277

#	Article	IF	CITATIONS
19	Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630.	21.0	275
20	4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 2017, 9, 012001.	7.1	271
21	An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Materials, 2019, 11, .	7.9	260
22	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	48.7	236
23	An Advanced Multifunctional Hydrogelâ€Based Dressing for Wound Monitoring and Drug Delivery. Advanced Healthcare Materials, 2017, 6, 1700718.	7.6	236
24	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	10.0	235
25	Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, 2018, 10, 024102.	7.1	219
26	Aqueous Twoâ€Phase Emulsion Bioinkâ€Enabled 3D Bioprinting of Porous Hydrogels. Advanced Materials, 2018, 30, e1805460.	21.0	217
27	A Temperatureâ€Sensitive Drug Release System Based on Phaseâ€Change Materials. Angewandte Chemie - International Edition, 2010, 49, 7904-7908.	13.8	211
28	Glucoseâ€ 6 ensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Advanced Materials, 2017, 29, 1606380.	21.0	206
29	A Bioactive Carbon Nanotubeâ€Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016, 28, 3280-3289.	21.0	199
30	Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues. Advanced Materials, 2018, 30, e1706913.	21.0	199
31	Evolution and clinical translation of drug delivery nanomaterials. Nano Today, 2017, 15, 91-106.	11.9	196
32	Bioprinting the Cancer Microenvironment. ACS Biomaterials Science and Engineering, 2016, 2, 1710-1721.	5.2	194
33	Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis. ACS Applied Materials & Interfaces, 2017, 9, 11428-11439.	8.0	193
34	Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Advanced Healthcare Materials, 2017, 6, 1700433.	7.6	186
35	Bioprinted thrombosis-on-a-chip. Lab on A Chip, 2016, 16, 4097-4105.	6.0	183
36	Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Analytical Chemistry, 2016, 88, 10019-10027.	6.5	181

#	Article	IF	CITATIONS
37	Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomaterialia, 2021, 124, 219-232.	8.3	179
38	3Dâ€Bioprinted Miniâ€Brain: A Glioblastoma Model to Study Cellular Interactions and Therapeutics. Advanced Materials, 2019, 31, e1806590.	21.0	168
39	Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Research, 2018, 28, 918-933.	12.0	165
40	Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nature Communications, 2020, 11, 1267.	12.8	158
41	Spatially and temporally controlled hydrogels for tissue engineering. Materials Science and Engineering Reports, 2017, 119, 1-35.	31.8	151
42	Effective bioprinting resolution in tissue model fabrication. Lab on A Chip, 2019, 19, 2019-2037.	6.0	148
43	An injectable shear-thinning biomaterial for endovascular embolization. Science Translational Medicine, 2016, 8, 365ra156.	12.4	147
44	Reversed-engineered human alveolar lung-on-a-chip model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	144
45	Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Design and Manufacturing, 2018, 1, 215-224.	7.7	143
46	Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017, 139, 163-171.	11.4	140
47	Electrically Driven Microengineered Bioinspired Soft Robots. Advanced Materials, 2018, 30, 1704189.	21.0	140
48	From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomedical Materials (Bristol), 2015, 10, 034006.	3.3	134
49	Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Scientific Reports, 2016, 6, 24598.	3.3	132
50	Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science, 2017, 4, 1600522.	11.2	131
51	Cold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale, 2011, 3, 1724.	5.6	130
52	Dissolvable Microneedles Coupled with Nanofiber Dressings Eradicate Biofilms <i>via</i> Effectively Delivering a Database-Designed Antimicrobial Peptide. ACS Nano, 2020, 14, 11775-11786.	14.6	129
53	Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerizationâ€Based 3D Printing. Advanced Healthcare Materials, 2020, 9, e2000156.	7.6	128
54	Inverse Opal Scaffolds and Their Biomedical Applications. Advanced Materials, 2017, 29, 1701115.	21.0	127

#	Article	IF	CITATIONS
55	3D extrusion bioprinting. Nature Reviews Methods Primers, 2021, 1, .	21.2	127
56	Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication, 2017, 9, 015020.	7.1	126
57	Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development. Applied in Vitro Toxicology, 2016, 2, 82-96.	1.1	124
58	Bioprinted Injectable Hierarchically Porous Gelatin Methacryloyl Hydrogel Constructs with Shapeâ€Memory Properties. Advanced Functional Materials, 2020, 30, 2003740.	14.9	122
59	A Bioinspired Medical Adhesive Derived from Skin Secretion of <i>Andrias davidianus</i> for Wound Healing. Advanced Functional Materials, 2019, 29, 1809110.	14.9	121
60	A Tumorâ€onâ€a hip System with Bioprinted Blood and Lymphatic Vessel Pair. Advanced Functional Materials, 2019, 29, 1807173.	14.9	121
61	Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics, 2017, 11, 044109.	2.4	120
62	Fabrication of Microbeads with a Controllable Hollow Interior and Porous Wall Using a Capillary Fluidic Device. Advanced Functional Materials, 2009, 19, 2943-2949.	14.9	118
63	Neovascularization in Biodegradable Inverse Opal Scaffolds with Uniform and Precisely Controlled Pore Sizes. Advanced Healthcare Materials, 2013, 2, 145-154.	7.6	117
64	Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Research, 2021, 14, 846-857.	10.4	117
65	Paper-based microfluidic system for tear electrolyte analysis. Lab on A Chip, 2017, 17, 1137-1148.	6.0	111
66	Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Materials Science and Engineering C, 2021, 118, 111324.	7.3	111
67	Hyaluronic Acid (HA)â€Based Silk Fibroin/Zinc Oxide Core–Shell Electrospun Dressing for Burn Wound Management. Macromolecular Bioscience, 2020, 20, e1900328.	4.1	110
68	A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics, 2016, 10, 044111.	2.4	109
69	Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sensors and Actuators B: Chemical, 2018, 255, 100-109.	7.8	104
70	Kidney-on-a-chip: untapped opportunities. Kidney International, 2018, 94, 1073-1086.	5.2	104
71	The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. Materials, 2019, 12, 2945.	2.9	103
72	Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discovery Today, 2017, 22, 1392-1399.	6.4	102

#	Article	IF	CITATIONS
73	Low cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. Food Control, 2017, 82, 227-232.	5.5	101
74	Emerging Technologies in Multiâ€Material Bioprinting. Advanced Materials, 2021, 33, e2104730.	21.0	100
75	Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews, 2021, 8, .	11.3	99
76	Tough Bonding, Onâ€Demand Debonding, and Facile Rebonding between Hydrogels and Diverse Metal Surfaces. Advanced Materials, 2019, 31, e1904732.	21.0	98
77	Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanutsâ€) and their potential applications in hemostasis. Biomaterials, 2018, 179, 46-59.	11.4	96
78	Locally Deployable Nanofiber Patch for Sequential Drug Delivery in Treatment of Primary and Advanced Orthotopic Hepatomas. ACS Nano, 2018, 12, 6685-6699.	14.6	95
79	Functionalizing Double-Network Hydrogels for Applications in Remote Actuation and in Low-Temperature Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 30247-30258.	8.0	93
80	Labeling Human Mesenchymal Stem Cells with Gold Nanocages for <i>in vitro</i> and <i>in vivo</i> Tracking by Two-Photon Microscopy and Photoacoustic Microscopy. Theranostics, 2013, 3, 532-543.	10.0	92
81	A highly stretchable and robust non-fluorinated superhydrophobic surface. Journal of Materials Chemistry A, 2017, 5, 16273-16280.	10.3	89
82	Label-free photoacoustic microscopy of cytochromes. Journal of Biomedical Optics, 2013, 18, 020504.	2.6	87
83	A cost-effective fluorescence mini-microscope for biomedical applications. Lab on A Chip, 2015, 15, 3661-3669.	6.0	86
84	Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression. Chemical Engineering Journal, 2020, 390, 124312.	12.7	86
85	Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nature Communications, 2018, 9, 2143.	12.8	85
86	Bioprinting: 3D Bioprinting: from Benches to Translational Applications (Small 23/2019). Small, 2019, 15, 1970126.	10.0	84
87	Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nature Protocols, 2021, 16, 2564-2593.	12.0	80
88	Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab on A Chip, 2016, 16, 1579-1586.	6.0	79
89	Protein/polysaccharideâ€based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 769-781.	4.0	79
90	Highly Porous Microcarriers for Minimally Invasive In Situ Skeletal Muscle Cell Delivery. Small, 2019, 15, e1901397.	10.0	77

#	Article	IF	CITATIONS
91	Biomechanical Strain Exacerbates Inflammation on a Progeriaâ€onâ€a hip Model. Small, 2017, 13, 1603737.	10.0	75
92	Towards the development of human immune-system-on-a-chip platforms. Drug Discovery Today, 2019, 24, 517-525.	6.4	75
93	Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Materials Science and Engineering C, 2020, 111, 110756.	7.3	73
94	Digital Light Processing Based Bioprinting with Composable Gradients. Advanced Materials, 2022, 34, e2107038.	21.0	71
95	Uniform Beads with Controllable Pore Sizes for Biomedical Applications. Small, 2010, 6, 1492-1498.	10.0	70
96	Embedded Multimaterial Extrusion Bioprinting. SLAS Technology, 2018, 23, 154-163.	1.9	68
97	Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a025718.	6.2	67
98	Liverâ€onâ€aâ€Chip Models of Fatty Liver Disease. Hepatology, 2020, 71, 733-740.	7.3	67
99	Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioactive Materials, 2021, 6, 1012-1027.	15.6	67
100	Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine, 2015, 10, 685-688.	3.3	65
101	Permeability mapping of gelatin methacryloyl hydrogels. Acta Biomaterialia, 2018, 77, 38-47.	8.3	65
102	An enzyme-sensitive probe for photoacoustic imaging and fluorescence detection of protease activity. Nanoscale, 2011, 3, 950.	5.6	64
103	Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-Independent Synergistic Photothermal andAThermodynamic Therapy. Nano-Micro Letters, 2021, 13, 99.	27.0	64
104	Electrospun nanofiber blend with improved mechanical and biological performance. International Journal of Nanomedicine, 2018, Volume 13, 7891-7903.	6.7	63
105	Advancing Tissue Engineering: A Tale of Nanoâ€, Microâ€, and Macroscale Integration. Small, 2016, 12, 2130-2145.	10.0	62
106	3D-printable colloidal photonic crystals. Materials Today, 2022, 56, 29-41.	14.2	61
107	A General Strategy for Extrusion Bioprinting of Bioâ€Macromolecular Bioinks through Alginateâ€Templated Dualâ€Stage Crosslinking. Macromolecular Bioscience, 2018, 18, e1800127.	4.1	60
108	Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, 6, 1604-1615.	5.4	59

#	Article	IF	CITATIONS
109	Inverse opal scaffolds for applications in regenerative medicine. Soft Matter, 2013, 9, 9747.	2.7	58
110	Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chemical Engineering Journal, 2021, 426, 130561.	12.7	58
111	Visible light crosslinkable human hair keratin hydrogels. Bioengineering and Translational Medicine, 2018, 3, 37-48.	7.1	57
112	A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy. Small, 2021, 17, e2004258.	10.0	57
113	Symbiotic Photosynthetic Oxygenation within 3D-Bioprinted Vascularized Tissues. Matter, 2021, 4, 217-240.	10.0	57
114	Coaxial Extrusion of Tubular Tissue Constructs Using a Gelatin/GelMA Blend Bioink. ACS Biomaterials Science and Engineering, 2019, 5, 5514-5524.	5.2	55
115	Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Frontiers in Pharmacology, 2020, 11, 622.	3.5	55
116	Multi-Scale Molecular Photoacoustic Tomography of Gene Expression. PLoS ONE, 2012, 7, e43999.	2.5	54
117	Endovascular Embolization by Transcatheter Delivery of Particles: Past, Present, and Future. Journal of Functional Biomaterials, 2017, 8, 12.	4.4	54
118	Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. Sensors and Actuators B: Chemical, 2018, 262, 625-636.	7.8	54
119	Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Advanced Healthcare Materials, 2019, 8, e1801146.	7.6	54
120	An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing. Materials Today Bio, 2020, 8, 100074.	5.5	52
121	Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nature Communications, 2021, 12, 6600.	12.8	52
122	Bioreactors for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2019, 8, e1701504.	7.6	51
123	A Foreign Body Responseâ€onâ€aâ€Chip Platform. Advanced Healthcare Materials, 2019, 8, e1801425.	7.6	51
124	Three-Dimensional Printing: An Enabling Technology for IR. Journal of Vascular and Interventional Radiology, 2016, 27, 859-865.	0.5	50
125	Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices. Chemistry of Materials, 2016, 28, 3641-3648.	6.7	49
126	Photoacoustic microscopy in tissue engineering. Materials Today, 2013, 16, 67-77.	14.2	48

#	Article	IF	CITATIONS
127	Copper Sulfide Nanoparticle/Cellulose Composite Paper: Room-Temperature Green Fabrication for NIR Laser-Inducible Ablation of Pathogenic Microorganisms. ACS Sustainable Chemistry and Engineering, 2017, 5, 2648-2655.	6.7	48
128	Mimicking Human Pathophysiology in Organâ€onâ€Chip Devices. Advanced Biology, 2018, 2, 1800109.	3.0	48
129	Colloidal Photonic Crystals for Biomedical Applications. Small Structures, 2021, 2, 2000110.	12.0	47
130	A hemostatic sponge derived from skin secretion of Andrias davidianus and nanocellulose. Chemical Engineering Journal, 2021, 416, 129136.	12.7	46
131	Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing. Nano Letters, 2019, 19, 3603-3611.	9.1	45
132	A Smartphoneâ€Enabled Portable Digital Light Processing 3D Printer. Advanced Materials, 2021, 33, e2102153.	21.0	45
133	Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioactive Materials, 2022, 11, 130-139.	15.6	45
134	Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. Scientific Reports, 2016, 6, 22691.	3.3	44
135	Nanoparticles for immune system targeting. Drug Discovery Today, 2017, 22, 1295-1301.	6.4	43
136	Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx. Cell Death Discovery, 2018, 4, 1.	4.7	43
137	Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication, 2020, 12, 035023.	7.1	43
138	Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nature Communications, 2022, 13, .	12.8	43
139	Influence of Surface Chemistry on Adhesion and Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells. ACS Biomaterials Science and Engineering, 2017, 3, 1119-1128.	5.2	42
140	Colorimetric loop-mediated isothermal amplification (LAMP) for cost-effective and quantitative detection of SARS-CoV-2: the change in color in LAMP-based assays quantitatively correlates with viral copy number. Analytical Methods, 2021, 13, 169-178.	2.7	42
141	An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. Journal of Controlled Release, 2021, 335, 359-368.	9.9	42
142	Supercritical Fluid-Assisted Fabrication of Indocyanine Green-Encapsulated Silk Fibroin Nanoparticles for Dual-Triggered Cancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 3487-3497.	5.2	41
143	Faithful Fabrication of Biocompatible Multicompartmental Memomicrospheres for Digitally Colorâ€Tunable Barcoding. Small, 2020, 16, e1907586.	10.0	41
144	Controlling the Pore Sizes and Related Properties of Inverse Opal Scaffolds for Tissue Engineering Applications. Macromolecular Rapid Communications, 2013, 34, 485-491.	3.9	40

#	Article	IF	CITATIONS
145	Boosting clinical translation of nanomedicine. Nanomedicine, 2016, 11, 1495-1497.	3.3	40
146	Modeling Endothelialized Hepatic Tumor Microtissues for Drug Screening. Advanced Science, 2020, 7, 2002002.	11.2	40
147	3D Immunocompetent Organâ€onâ€a hip Models. Small Methods, 2020, 4, 2000235.	8.6	40
148	A Tetra-PEG Hydrogel Based Aspirin Sustained Release System Exerts Beneficial Effects on Periodontal Ligament Stem Cells Mediated Bone Regeneration. Frontiers in Chemistry, 2019, 7, 682.	3.6	39
149	Synchronized electromechanical integration recording of cardiomyocytes. Biosensors and Bioelectronics, 2018, 117, 354-365.	10.1	38
150	Improving Bioprinted Volumetric Tumor Microenvironments In Vitro. Trends in Cancer, 2020, 6, 745-756.	7.4	38
151	High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Materials Today Bio, 2021, 12, 100162.	5.5	38
152	Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Materials, 2019, 7, 031301.	5.1	37
153	Bioprinting of Small-Diameter Blood Vessels. Engineering, 2021, 7, 832-844.	6.7	37
154	Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine, 2015, 10, 689-692.	3.3	36
155	Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic) Tj ETQq1 1 0.784314 Scientific Reports, 2017, 7, 359.	rgBT /Ove 3.3	erlock 10 Tf 36
156	A hepatocellular carcinoma–bone metastasis-on-a-chip model for studying thymoquinone-loaded anticancer nanoparticles. Bio-Design and Manufacturing, 2020, 3, 189-202.	7.7	36
157	Enhanced electric-field-induced strains in (K,Na)NbO3 piezoelectrics from heterogeneous structures. Materials Today, 2021, 46, 44-53.	14.2	36
158	3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends in Biotechnology, 2022, 40, 432-447.	9.3	36
159	Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter, 2022, 5, 573-593.	10.0	36
160	Vertical Extrusion Cryo(bio)printing for Anisotropic Tissue Manufacturing. Advanced Materials, 2022, 34, e2108931.	21.0	36
161	Imaging Biomaterial–Tissue Interactions. Trends in Biotechnology, 2018, 36, 403-414.	9.3	35
162	The Delivery of Extracellular Vesicles Loaded in Biomaterial Scaffolds for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1015.	4.1	35

#	Article	IF	CITATIONS
163	3D bioprinted organâ€onâ€chips. Aggregate, 2023, 4, .	9.9	35
164	Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators. Scientific Reports, 2016, 6, 22237.	3.3	34
165	Current advances in skin-on-a-chip models for drug testing. Microphysiological Systems, 2018, 1, 1-1.	2.0	34
166	Porous Electrospun Fibers with Self‧ealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. Small, 2017, 13, 1701949.	10.0	33
167	Hemostasis and nanotechnology. Cardiovascular Diagnosis and Therapy, 2017, 7, S267-S275.	1.7	33
168	Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway. Stem Cell Research and Therapy, 2018, 9, 62.	5.5	33
169	Freezeâ€Casting with 3Dâ€Printed Templates Creates Anisotropic Microchannels and Patterned Macrochannels within Biomimetic Nanofiber Aerogels for Rapid Cellular Infiltration. Advanced Healthcare Materials, 2021, 10, e2100238.	7.6	33
170	Deep image prior for undersampling high-speed photoacoustic microscopy. Photoacoustics, 2021, 22, 100266.	7.8	33
171	Nonâ€Invasive and Inâ€Situ Characterization of the Degradation of Biomaterial Scaffolds by Volumetric Photoacoustic Microscopy. Angewandte Chemie - International Edition, 2014, 53, 184-188.	13.8	31
172	Eccentric magnetic microcapsules for orientation-specific and dual stimuli-responsive drug release. Journal of Materials Chemistry B, 2015, 3, 4530-4538.	5.8	31
173	Bioinspired Universal Flexible Elastomerâ€Based Microchannels. Small, 2018, 14, e1702170.	10.0	31
174	A Bioinspired Hemostatic Powder Derived from the Skin Secretion of <i>Andrias davidianus</i> for Rapid Hemostasis and Intraoral Wound Healing. Small, 2022, 18, e2101699.	10.0	31
175	Microporeâ€Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications. Small, 2022, 18, .	10.0	31
176	Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification. Analytical Chemistry, 2016, 88, 11504-11512.	6.5	30
177	3Dâ€Printed Sugarâ€Based Stents Facilitating Vascular Anastomosis. Advanced Healthcare Materials, 2018, 7, e1800702.	7.6	30
178	Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomaterials Science and Engineering, 2021, 7, 4009-4026.	5.2	30
179	Supercritical Fluid-Assisted Decoration of Nanoparticles on Porous Microcontainers for Codelivery of Therapeutics and Inhalation Therapy of Diabetes. ACS Biomaterials Science and Engineering, 2018, 4, 4225-4235.	5.2	29
180	Engineering in vitro human tissue models through bio-design and manufacturing. Bio-Design and Manufacturing, 2020, 3, 155-159.	7.7	29

#	Article	IF	CITATIONS
181	Designable dual-power micromotors fabricated from a biocompatible gas-shearing strategy. Chemical Engineering Journal, 2021, 407, 127187.	12.7	29
182	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Materials Horizons, 2018, 5, 813-822.	12.2	28
183	Sacrificial Bioprinting of a Mammary Ductal Carcinoma Model. Biotechnology Journal, 2019, 14, 1700703.	3.5	28
184	Investigating lymphangiogenesis in a sacrificially bioprinted volumetric model of breast tumor tissue. Methods, 2020, 190, 72-79.	3.8	28
185	Association Between Implementation of the Severe Sepsis and Septic Shock Early Management Bundle Performance Measure and Outcomes in Patients With Suspected Sepsis in US Hospitals. JAMA Network Open, 2021, 4, e2138596.	5.9	28
186	Hydrogel Bioink with Multilayered Interfaces Improves Dispersibility of Encapsulated Cells in Extrusion Bioprinting. ACS Applied Materials & Interfaces, 2019, 11, 30585-30595.	8.0	27
187	Inhibition of Tet1- and Tet2-mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death and Disease, 2019, 10, 780.	6.3	27
188	ACEI/ARB therapy in COVID-19: the double-edged sword of ACE2 and SARS-CoV-2 viral docking. Critical Care, 2020, 24, 475.	5.8	27
189	Anti-fouling strategies for central venous catheters. Cardiovascular Diagnosis and Therapy, 2017, 7, S246-S257.	1.7	26
190	Supercritical Fluidâ€Assisted Porous Microspheres for Efficient Delivery of Insulin and Inhalation Therapy of Diabetes. Advanced Healthcare Materials, 2019, 8, e1800910.	7.6	26
191	High-throughput single-cell analysis of exosome mediated dual drug delivery, <i>in vivo</i> fate and synergistic tumor therapy. Nanoscale, 2020, 12, 13742-13756.	5.6	26
192	A Transparent, Wearable Fluorescent Mouthguard for High ensitive Visualization and Accurate Localization of Hidden Dental Lesion Sites. Advanced Materials, 2020, 32, e2000060.	21.0	26
193	Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers, 2021, 13, 1590.	4.5	26
194	Antiviral biomaterials. Matter, 2021, 4, 1892-1918.	10.0	26
195	Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends in Pharmacological Sciences, 2021, 42, 715-728.	8.7	26
196	Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids. Journal of Visualized Experiments, 2017, , .	0.3	25
197	A Dualâ€Layered Microfluidic System for Longâ€Term Controlled In Situ Delivery of Multiple Antiâ€Inflammatory Factors for Chronic Neural Applications. Advanced Functional Materials, 2018, 28, 1702009.	14.9	25
198	3D bioprinting for oncology applications. Journal of 3D Printing in Medicine, 2019, 3, 55-58.	2.0	24

#	Article	IF	CITATIONS
199	Accuracy of a 3-Dimensionally Printed Navigational Template for Localizing Small Pulmonary Nodules. JAMA Surgery, 2019, 154, 295.	4.3	24
200	Portal Vein Embolization: Impact of Chemotherapy and Genetic Mutations. Journal of Clinical Medicine, 2017, 6, 26.	2.4	23
201	Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering. Advanced Biology, 2019, 3, e1900137.	3.0	23
202	The Delivery of RNA-Interference Therapies Based on Engineered Hydrogels for Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 445.	4.1	23
203	High-Throughput and Continuous Chaotic Bioprinting of Spatially Controlled Bacterial Microcosms. ACS Biomaterials Science and Engineering, 2021, 7, 2408-2419.	5.2	23
204	Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials, 2022, 280, 121302.	11.4	23
205	Biomimetic models of the glomerulus. Nature Reviews Nephrology, 2022, 18, 241-257.	9.6	22
206	Laterally Confined Microfluidic Patterning of Cells for Engineering Spatially Defined Vascularization. Small, 2016, 12, 5132-5139.	10.0	21
207	Conformation-driven strategy for resilient and functional protein materials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
208	A Natural Hydrogel with Prohealing Properties Enhances Tendon Regeneration. Small, 2022, 18, e2105255.	10.0	21
209	Artificial Intelligenceâ€Assisted Highâ€Throughput Screening of Printing Conditions of Hydrogel Architectures for Accelerated Diabetic Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	21
210	3D human nonalcoholic hepatic steatosis and fibrosis models. Bio-Design and Manufacturing, 2021, 4, 157-170.	7.7	20
211	Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro. Biofabrication, 2020, 12, 045027.	7.1	20
212	Bioengineered in vitro models of thrombosis: methods and techniques. Cardiovascular Diagnosis and Therapy, 2017, 7, S329-S335.	1.7	19
213	The potential of microfluidics-enhanced extrusion bioprinting. Biomicrofluidics, 2021, 15, 041304.	2.4	19
214	A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication, 2022, 14, 024105.	7.1	19
215	Opticalâ€Resolution Photoacoustic Microscopy for Volumetric and Spectral Analysis of Histological and Immunochemical Samples. Angewandte Chemie - International Edition, 2014, 53, 8099-8103.	13.8	18
216	CRL4DCAF8 dependent opposing stability control over the chromatin remodeler LSH orchestrates epigenetic dynamics in ferroptosis. Cell Death and Differentiation, 2021, 28, 1593-1609.	11.2	18

#	Article	IF	CITATIONS
217	Gut-microbiota-on-a-chip: an enabling field for physiological research. Microphysiological Systems, 2018, 1, 1-1.	2.0	17
218	3D bioprinting of glioblastoma models. Journal of 3D Printing in Medicine, 2020, 4, 113-125.	2.0	17
219	State-of-art affordable bioprinters: A guide for the DiY community. Applied Physics Reviews, 2021, 8, .	11.3	17
220	Targeted-gene silencing of BRAF to interrupt BRAF/MEK/ERK pathway synergized photothermal therapeutics for melanoma using a novel FA-GNR-siBRAF nanosystem. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1679-1693.	3.3	16
221	Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Scientific Reports, 2021, 11, 2800.	3.3	16
222	Nature-derived bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Materials Today Advances, 2021, 11, 100150.	5.2	16
223	Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems. Current Drug Metabolism, 2018, 19, 100-109.	1.2	16
224	Platinum nanopetal-based potassium sensors for acute cell death monitoring. RSC Advances, 2016, 6, 40517-40526.	3.6	15
225	Special Magnetic Catalyst with Lignin-Reduced Au–Pd Nanoalloy. ACS Omega, 2017, 2, 4938-4945.	3.5	15
226	Fabrication of Thymoquinone‣oaded Albumin Nanoparticles by Microfluidic Particle Synthesis and Their Effect on Planarian Regeneration. Macromolecular Bioscience, 2019, 19, e1900182.	4.1	15
227	Surface Modification by Divalent Main-Group-Elemental Ions for Improved Bone Remodeling To Instruct Implant Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 3311-3324.	5.2	15
228	T cells participate in bone remodeling during the rapid palatal expansion. FASEB Journal, 2020, 34, 15327-15337.	0.5	15
229	Engineering (Bio)Materials through Shrinkage and Expansion. Advanced Healthcare Materials, 2021, 10, e2100380.	7.6	15
230	Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein. PLoS ONE, 2015, 10, e0135859.	2.5	15
231	Uniaxial and Coaxial Vertical Embedded Extrusion Bioprinting. Advanced Healthcare Materials, 2022, 11, e2102411.	7.6	15
232	Interplay between craniofacial stem cells and immune stimulus. Stem Cell Research and Therapy, 2017, 8, 147.	5.5	14
233	A miniaturized optical tomography platform for volumetric imaging of engineered living systems. Lab on A Chip, 2019, 19, 550-561.	6.0	14
234	A Modular, Reconfigurable Microfabricated Assembly Platform for Microfluidic Transport and Multitype Cell Culture and Drug Testing. Micromachines, 2020, 11, 2.	2.9	14

#	Article	IF	CITATIONS
235	Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules, 2021, 11, 787.	4.0	14
236	A 3Dâ€Bioprinted Multiple Myeloma Model. Advanced Healthcare Materials, 2022, 11, e2100884.	7.6	14
237	DNA methylation and demethylation link the properties of mesenchymal stem cells: Regeneration and immunomodulation. World Journal of Stem Cells, 2020, 12, 351-358.	2.8	14
238	Ceramic Toughening Strategies for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2022, 10, 840372.	4.1	14
239	Seeing Through the Surface: Non-invasive Characterization of Biomaterial–Tissue Interactions Using Photoacoustic Microscopy. Annals of Biomedical Engineering, 2016, 44, 649-666.	2.5	13
240	Starting a Medical Technology Venture as a Young Academic Innovator or Student Entrepreneur. Annals of Biomedical Engineering, 2018, 46, 1-13.	2.5	13
241	Universal Peptide Hydrogel for Scalable Physiological Formation and Bioprinting of 3D Spheroids from Human Induced Pluripotent Stem Cells. Advanced Functional Materials, 2021, 31, 2104046.	14.9	13
242	Mechanical force-driven TNFα endocytosis governs stem cell homeostasis. Bone Research, 2020, 8, 44.	11.4	13
243	Vascularizing the brain inÂvitro. IScience, 2022, 25, 104110.	4.1	13
244	A novel mutation of MSX1 in oligodontia inhibitsÂodontogenesis of dental pulp stem cells via the ERK pathway. Stem Cell Research and Therapy, 2018, 9, 221.	5.5	12
245	Macrophage inhibits the osteogenesis of fibroblasts in ultrahigh molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis. Journal of Orthopaedic Surgery and Research, 2019, 14, 80.	2.3	12
246	Exosomes targeted towards applications in regenerative medicine. Nano Select, 2021, 2, 880-908.	3.7	12
247	Handheld bioprinting strategies for <i>in situ</i> wound dressing. Essays in Biochemistry, 2021, 65, 533-543.	4.7	12
248	Minimally invasive co-injection of modular micro-muscular and micro-vascular tissues improves in situ skeletal muscle regeneration. Biomaterials, 2021, 277, 121072.	11.4	12
249	Drawnâ€onâ€Skin Sensors from Fully Biocompatible Inks toward Highâ€Quality Electrophysiology. Small, 2022, 18, .	10.0	12
250	Expansion mini-microscopy: An enabling alternative in point-of-care diagnostics. Current Opinion in Biomedical Engineering, 2017, 1, 45-53.	3.4	11
251	Acetylsalicylic acid rescues the immunomodulation of inflamed gingiva-derived mesenchymal stem cells via upregulating FasL in mice. Stem Cell Research and Therapy, 2019, 10, 368.	5.5	11
252	Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. Advanced NanoBiomed Research, 2021, 1, 2100035.	3.6	11

#	Article	IF	CITATIONS
253	Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732130.	4.1	11
254	Fabrication of paper-based devices for in vitro tissue modeling. Bio-Design and Manufacturing, 2020, 3, 252-265.	7.7	11
255	Fabrication of cell patches using biodegradable scaffolds with a hexagonal array of interconnected pores (SHAIPs). Polymer, 2014, 55, 445-452.	3.8	10
256	Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nature Communications, 2022, 13, 2810.	12.8	10
257	Bioprinting: Rapid Continuous Multimaterial Extrusion Bioprinting (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	21.0	9
258	Customizable Microfluidic Origami Liverâ€onâ€aâ€Chip (oLOC). Advanced Materials Technologies, 2022, 7, 2100677.	5.8	9
259	Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics, 2022, 12, 891-909.	10.0	9
260	Bioinspired Andrias davidianus-Derived wound dressings for localized drug-elution. Bioactive Materials, 2022, 15, 482-494.	15.6	9
261	Gold Nanoprobe-Enabled Three-Dimensional Ozone Imaging by Optical Coherence Tomography. Analytical Chemistry, 2017, 89, 2561-2568.	6.5	8
262	Plasmonic Nanoprobe of (Gold Triangular Nanoprism Core)/(Polyaniline Shell) for Real-Time Three-Dimensional pH Imaging of Anterior Chamber. Analytical Chemistry, 2017, 89, 9758-9766.	6.5	8
263	Digital Breast Tomosynthesis imaging using compressed sensing based reconstruction for 10 radiation doses real data. Biomedical Signal Processing and Control, 2019, 48, 26-34.	5.7	8
264	Vascularization in 3D printed tissues: emerging technologies to overcome longstanding obstacles. AIMS Cell and Tissue Engineering, 2018, 2, 163-184.	0.4	8
265	3D Printed Anchoring Sutures for Permanent Shaping of Tissues. Macromolecular Bioscience, 2017, 17, 1700304.	4.1	7
266	Biomedicine: Porous Electrospun Fibers with Self‧ealing Functionality: An Enabling Strategy for Trapping Biomacromolecules (Small 47/2017). Small, 2017, 13, 1770249.	10.0	7
267	Fractureâ€Resistant and Bioresorbable Drugâ€Eluting Poly(glycerol Sebacate) Coils. Advanced Therapeutics, 2019, 2, 1800109.	3.2	7
268	Endothelialized microrods for minimally invasive <i>in situ</i> neovascularization. Biofabrication, 2020, 12, 015011.	7.1	7
269	Efficiently Enhanced Triplet–Triplet Annihilation Upconversion Boosted by Multibandgaps Photonic Crystals. Journal of Physical Chemistry C, 2020, 124, 18482-18489.	3.1	7
270	Photoacoustic imaging of 3D-printed vascular networks. Biofabrication, 2022, 14, 025001.	7.1	7

#	Article	IF	CITATIONS
271	3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin. Molecules, 2022, 27, 2148.	3.8	7
272	Co-axial printing of convoluted proximal tubule for kidney disease modeling. Biofabrication, 2022, 14, 044102.	7.1	7
273	Towards engineering integrated cardiac organoids: beating recorded. Journal of Thoracic Disease, 2016, 8, E1683-E1687.	1.4	6
274	Commentary: Human brain organoid-on-a-chip to model prenatal nicotine exposure. Frontiers in Bioengineering and Biotechnology, 2018, 6, 138.	4.1	6
275	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 321-338.		6
276	Digital Light Processing Based Bioprinting with Composable Gradients (Adv. Mater. 1/2022). Advanced Materials, 2022, 34, .	21.0	6
277	Biosurfactant-Stabilized Micropore-Forming GelMA Inks Enable Improved Usability for 3D Printing Applications. Regenerative Engineering and Translational Medicine, 2022, 8, 471-481.	2.9	6
278	Eccentric magnetic microcapsules for MRI-guided local administration and pH-regulated drug release. RSC Advances, 2018, 8, 41956-41965.	3.6	5
279	Bioprinting: Aqueous Twoâ€Phase Emulsion Bioinkâ€Enabled 3D Bioprinting of Porous Hydrogels (Adv.) Tj ETQq1	1_0.7843 21:0	14 rgBT /C
280	Microfluidic technologies for local drug delivery. , 2019, , 281-305.		5
281	Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots. ACS Applied Materials & Interfaces, 2020, 12, 31793-31803.	8.0	5
282	Modeling aortic diseases using induced pluripotent stem cells. Stem Cells Translational Medicine, 2021, 10, 190-197.	3.3	5
283	Biomaterials for on-chip organ systems. , 2020, , 669-707.		5
284	Organic light-emitting diode microdisplay-enabled scalable visible-light 3D printing. Matter, 2021, 4, 3794-3797.	10.0	5
285	Culture of cancer spheroids and evaluation of anti-cancer drugs in 3D-printed miniaturized continuous stirred tank reactors (mCSTRs). Biofabrication, 2022, 14, 035007.	7.1	5
286	Bioprinting: Extrusion Bioprinting of Shearâ€Thinning Gelatin Methacryloyl Bioinks (Adv. Healthcare) Tj ETQqO 0 C) rgBT /Ov	erlock 10 Ti 4
287	Bioprinting: Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting (Adv. Mater.) Tj ETQq1	1_0.7843 21.0	14 rgBT /O
288	A medical mini-me one day your doctor could prescribe drugs based on now a biochip version of you reacts. IEEE Spectrum, 2019, 56, 44-49.	0.7	4

²⁸⁸

#	Article	IF	CITATIONS
289	Studying endothelial cell shedding and orientation using adaptive perfusionâ€culture in a microfluidic vascular chip. Biotechnology and Bioengineering, 2021, 118, 963-978.	3.3	4
290	SARS-CoV-2-related vascular injury: mechanisms, imaging and models. Microphysiological Systems, 2021, 5, 1-1.	2.0	4
291	Platforms for Personalized Polytherapeutics Discovery in COVID-19. Journal of Molecular Biology, 2021, 433, 166945.	4.2	4
292	Leveraging synthesis-swelling relationship to precisely engineer synthetic hydrogels. Matter, 2021, 4, 2676-2678.	10.0	4
293	Deep learning-enabled resolution-enhancement in mini- and regular microscopy for biomedical imaging. Sensors and Actuators A: Physical, 2021, 331, 112928.	4.1	4
294	Strategies towards kidney tissue biofabrication. Current Opinion in Biomedical Engineering, 2022, 21, 100362.	3.4	4
295	Functional biomaterials. APL Bioengineering, 2022, 6, 010401.	6.2	4
296	The era of translational nanomedicine. , 2022, 1, 9130006.		4
297	Introduction to advanced functional nanomaterials for biomedical applications. Nanoscale, 2022, 14, 7441-7443.	5.6	4
298	Patient-derived microphysiological model identifies the therapeutic potential of metformin for thoracic aortic aneurysm. EBioMedicine, 2022, 81, 104080.	6.1	4
299	Biosensors: Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes (Adv. Sci. 5/2017). Advanced Science, 2017, 4, .	11.2	3
300	Tissue Engineering: Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs (Adv. Funct.) Tj ETQq0 0 0 rg	BT /Oyerlo 14.9	ock ₃ 10 Tf 50 3
301	Wound Dressings: An Advanced Multifunctional Hydrogelâ€Based Dressing for Wound Monitoring and Drug Delivery (Adv. Healthcare Mater. 19/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	3
302	Modeling and experimental investigation of polymer micropart demolding from a Zrâ€based bulk metallic glass mold. Polymer Engineering and Science, 2019, 59, 2202-2210.	3.1	3
303	Perforated and Endothelialized Elastomeric Tubes for Vascular Modeling. Advanced Materials Technologies, 2019, 4, 1800741.	5.8	3
304	"Steel–Concrete―Inspired Biofunctional Layered Hybrid Cage for Spine Fusion and Segmental Bone Reconstruction. ACS Biomaterials Science and Engineering, 2017, 3, 637-647.	5.2	2
305	Supercritical Fluids: Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications (Adv. Healthcare Mater. 16/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	2
306	Modular multi-organ-on-chips platform with physicochemical sensor integration. , 2017, , .		2

YU SHRIKE ZHANG

#	Article	IF	CITATIONS
307	Microfluidic Bioprinting: Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870322.	21.0	2
308	Biomaterial Inks. Advanced Healthcare Materials, 2020, 9, e2001043.	7.6	2
309	Cellularized polymeric microarchitectures for drug screening. Smart Materials in Medicine, 2021, 2, 96-113.	6.7	2
310	Biomaterials for bioprinting. , 2022, , 51-86.		2
311	Organâ€Onâ€Aâ€Chip: Biomechanical Strain Exacerbates Inflammation on a Progeriaâ€onâ€aâ€Chip Model (Sma	all) Ti ETQ 10:0	q1 ₁ 10.784 ³
312	Engineering challenges in microphysiological systems. Future Science OA, 2017, 3, FSO209.	1.9	1
313	Pathologyâ€onâ€aâ€Chip: Mimicking Human Pathophysiology in Organâ€onâ€Chip Devices (Adv. Biosys. 10/201 Advanced Biology, 2018, 2, 1870092.	.8) _{3.0}	1
314	Bioprinting: A Tumorâ€onâ€a hip System with Bioprinted Blood and Lymphatic Vessel Pair (Adv. Funct.) Tj ETC	2q0.0,0 rg 14.9	BT ₁ /Overlock
315	A Smartphoneâ€Enabled Portable Digital Light Processing 3D Printer (Adv. Mater. 35/2021). Advanced Materials, 2021, 33, 2170271.	21.0	1
316	Microfluidic Coaxial Bioprinting of Hollow, Standalone, and Perfusable Vascular Conduits. Methods in Molecular Biology, 2022, 2375, 61-75.	0.9	1
317	Tumor-on-a-chip devices for cancer immunotherapy. , 2022, , 155-195.		1
318	Abstract 4828: Recapitulating mammary ductal carcinoma microenvironmentin vitrousing sacrificial bioprinting. , 2017, , .		1
319	Seven-year follow-up of the nonsurgical expansion of maxillary and mandibular arches in a young adult: A case report. World Journal of Clinical Cases, 2020, 8, 5371-5379.	0.8	1
320	Effects of the multifunctional hormone leptin on orthodontic tooth movement in rats. American Journal of Translational Research (discontinued), 2020, 12, 1976-1984.	0.0	1
321	A CMOS Cellular Interface Array for Digital Physiology Featuring High-Density Multi-Modal Pixels and Reconfigurable Sampling Rate. , 2022, , .		1
322	Fabrication of cell patches using scaffolds with a hexagonal array of interconnected pores (SHAIPs). , 2014, , .		0
323	Life as an early career researcher: interview with Yu Shrike Zhang. Future Science OA, 2018, 4, FSO262.	1.9	0

324 Dissolvable Stents: 3D-Printed Sugar-Based Stents Facilitating Vascular Anastomosis (Adv. Healthcare) Tj ETQq0 0 0 rgBT /Overlock 10 T

#	Article	IF	CITATIONS
325	BSCI-16. HEMODYNAMIC SHEAR STRESS SELECTS A SUBPOPULATION OF LUNG ADENOCARCINOMA CELLS WITH HIGHER METASTATIC CAPACITY. Neuro-Oncology Advances, 2019, 1, i4-i4.	0.7	0
326	Osteosarcoma Therapy: Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation (Adv. Sci. 8/2019). Advanced Science, 2019, 6, 1970051.	11.2	0
327	Cancer Modeling: 3Dâ€Bioprinted Miniâ€Brain: A Glioblastoma Model to Study Cellular Interactions and Therapeutics (Adv. Mater. 14/2019). Advanced Materials, 2019, 31, 1970101.	21.0	0
328	Kill two birds with one stone: A novel dual-functional nanobiomaterial platform with a clear translational potential for bone regeneration. Nano Research, 2020, 13, 2311-2312.	10.4	0
329	Organâ€onâ€aâ€Chip: A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy (Small 15/2021). Small, 2021, 17, 2170070.	10.0	0
330	Label-free detection of protein biomolecules secreted from a heart-on-a-chip model for drug cardiotoxicity evaluation. , 2018, , .		0
331	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 1-18.		0
332	Nanocomposites: A Transparent, Wearable Fluorescent Mouthguard for Highâ€Sensitive Visualization and Accurate Localization of Hidden Dental Lesion Sites (Adv. Mater. 21/2020). Advanced Materials, 2020, 32, 2070162.	21.0	0
333	3D Bioprinting for Liver Regeneration. , 2022, , 459-488.		0