
Ketan J Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1744891/publications.pdf Version: 2024-02-01

ΚετλΝΙ Ρλτει

#	Article	IF	CITATIONS
1	The emerging genetic and molecular basis of Fanconi anaemia. Nature Reviews Genetics, 2001, 2, 446-458.	7.7	542
2	Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen. Molecular Cell, 2015, 60, 177-188.	4.5	296
3	Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature, 2018, 553, 171-177.	13.7	284
4	Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature, 2017, 548, 549-554.	13.7	246
5	Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nature Genetics, 2011, 43, 147-152.	9.4	182
6	Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair. Molecular Cell, 2007, 28, 798-809.	4.5	180
7	TRAIP is a master regulator of DNA interstrand crosslink repair. Nature, 2019, 567, 267-272.	13.7	128
8	Mouse SLX4 Is a Tumor Suppressor that Stimulates the Activity of the Nuclease XPF-ERCC1 in DNA Crosslink Repair. Molecular Cell, 2014, 54, 472-484.	4.5	126
9	Development of a General Aza-Cope Reaction Trigger Applied to Fluorescence Imaging of Formaldehyde in Living Cells. Journal of the American Chemical Society, 2017, 139, 5338-5350.	6.6	121
10	The Genetic and Biochemical Basis of FANCD2 Monoubiquitination. Molecular Cell, 2014, 54, 858-869.	4.5	109
11	Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage. Molecular Cell, 2015, 57, 150-164.	4.5	106
12	Fanconi anemia and DNA replication repair. DNA Repair, 2007, 6, 885-890.	1.3	102
13	A 2-aza-Cope reactivity-based platform for ratiometric fluorescence imaging of formaldehyde in living cells. Chemical Science, 2017, 8, 4073-4081.	3.7	93
14	The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. Journal of Pathology, 2012, 226, 326-337.	2.1	92
15	Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans. Molecular Cell, 2020, 80, 996-1012.e9.	4.5	92
16	Increased formate overflow is a hallmark of oxidative cancer. Nature Communications, 2018, 9, 1368.	5.8	90
17	Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature, 2020, 579, 603-608.	13.7	82
18	Structure of the Fanconi anaemia monoubiquitin ligase complex. Nature, 2019, 575, 234-237.	13.7	80

KETAN J PATEL

#	Article	IF	CITATIONS
19	FANCD2–FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nature Structural and Molecular Biology, 2020, 27, 240-248.	3.6	80
20	Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. European Journal of Medicinal Chemistry, 2018, 152, 101-114.	2.6	57
21	Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome. Molecular Cell, 2014, 55, 807-817.	4.5	55
22	A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Medicinal Chemistry, 2019, 11, 2491-2504.	1.1	53
23	Xpf and Not the Fanconi Anaemia Proteins or Rev3 Accounts for the Extreme Resistance to Cisplatin in Dictyostelium discoideum. PLoS Genetics, 2009, 5, e1000645.	1.5	52
24	Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases. Nucleic Acids Research, 2014, 42, 13736-13748.	6.5	37
25	Amino acid dependent formaldehyde metabolism in mammals. Communications Chemistry, 2020, 3, .	2.0	17
26	Xpf suppresses mutagenic consequences of bacterial phagocytosis in Dictyostelium. Journal of Cell Science, 2016, 129, 4449-4454.	1.2	8
27	Do Mutational Dynamics in Stem Cells Explain the Origin of Common Cancers?. Cell Stem Cell, 2015, 16, 111-112.	5.2	7
28	"Ring-Fencing―BRCA1 Tumor Suppressor Activity. Cancer Cell, 2011, 20, 693-695.	7.7	2
29	Links Between DNA Damage and Metabolism, Pathways Causing Bone Marrow Failure in Fanconi Anemia, and Therapeutic Implications. Blood, 2012, 120, SCI-3-SCI-3.	0.6	0