Hangue Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1744745/publications.pdf

Version: 2024-02-01

759233 526287 47 796 12 27 h-index citations g-index papers 47 47 47 663 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Challenges, tasks, and opportunities in teleoperation of excavator toward human-in-the-loop construction automation. Automation in Construction, 2022, 135, 104119.	9.8	45
2	Pinching Force Changes by Modulating the Interaction Gain Over the Fingertip. IEEE Access, 2022, 10, 9744-9749.	4.2	3
3	Underground Metal Pipeline Localization Using Low-Cost Wireless Magnetic Sensors Mounted on an Excavator. IEEE Transactions on Industrial Electronics, 2022, 69, 10674-10683.	7.9	5
4	Palatal Electrotactile Display Outperforms Visual Display in Tongue Motor Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 529-539.	4.9	5
5	MCU-less biphasic electrical stimulation circuit for miniaturized neuromodulator. Biomedical Engineering Letters, 2022, 12, 285-293.	4.1	1
6	A New Approach of Minimizing Midas Touch Problem for a Tracer-Free Tongue-Controlled Assistive Technology. IEEE Sensors Journal, 2021, 21, 743-754.	4.7	8
7	Plantar or Palmar Tactile Augmentation Improves Lateral Postural Balance With Significant Influence from Cognitive Load. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 113-122.	4.9	9
8	Recent Progress in Animal Studies of the Skin- and Bone-integrated Pylon With Deep Porosity for Bone-Anchored Limb Prosthetics With and Without Neural Interface. Military Medicine, 2021, 186, 688-695.	0.8	4
9	Fully Implantable Plantar Cutaneous Augmentation System for Rats Using Closed-loop Electrical Nerve Stimulation. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 326-338.	4.0	11
10	A new approach of inducing proprioceptive illusion by transcutaneous electrical stimulation. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 73.	4.6	13
11	Closed-Loop Plantar Cutaneous Augmentation by Electrical Nerve Stimulation Increases Ankle Plantarflexion During Treadmill Walking. IEEE Transactions on Biomedical Engineering, 2021, 68, 2798-2809.	4.2	5
12	Motorized Treadmill and Optical Recording System for Gait Analysis of Grasshoppers. Sensors, 2021, 21, 5953.	3.8	1
13	Electrical Characterization of the Tongue and the Soft Palate Using Lumped-Element Model for Intraoral Neuromodulation. IEEE Transactions on Biomedical Engineering, 2021, 68, 3151-3160.	4.2	5
14	A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo. Medical Image Analysis, 2021, 74, 102221.	11.6	11
15	Contribution of Cervical Proprioception, Vision, and Vestibular Feedback on Reducing Dynamic Head–Trunk Orientation Error in the Yaw Direction. Frontiers in Neuroscience, 2021, 15, 774448.	2.8	3
16	Forehead Tactile Hallucination Is Augmented by the Perceived Risk and Accompanies Increase of Forehead Tactile Sensitivity. Sensors, 2021, 21, 8246.	3.8	0
17	A Computational Internal Model to Quantify the Effect of Sensorimotor Augmentation on Motor Output., 2020, 2020, 3751-3754.		3
18	A Multi-Channel Neural Recording System with Adaptive Electrode Selection for High-Density Neural Interface., 2020, 2020, 4306-4309.		4

#	Article	IF	Citations
19	Risk Factors for Postural and Functional Balance Impairment in Patients with Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 2020, 9, 609.	2.4	13
20	Electrically-Evoked Proximity Sensation Can Enhance Fine Finger Control in Telerobotic Pinch. Scientific Reports, 2020, 10, 163.	3.3	18
21	Closed-loop Tactile Augmentation by Transcutaneous Stimulation on either the Foot Sole or the Palm to Improve Lateral Postural Balance. , 2019, , .		13
22	An Intraoral Closed-Loop Monitoring and Stimulation System for Treatment of Swallowing Problems. , 2019, , .		1
23	Vibration Induced Proprioceptive Modulation in Surface-EMG Based Control of a Robotic Arm. , 2019, , .		7
24	A Wearable Intraoral System for Speech Therapy using Real-Time Closed-Loop Artificial Sensory Feedback to the Tongue. , 2019, , .		3
25	Supernumerary Body Schema Extension to Non-Corporeal Object by Adding Artificial Tactile Feedback using Electrical Stimulation. , 2019, , .		7
26	A Real-time Electrocolonogram Monitoring and Electrical Stimulation System for Promoting Mass Peristalsis of the Colon. , 2019, , .		5
27	Cutaneous sensory feedback from paw pads affects lateral balance control during split-belt locomotion in the cat. Journal of Experimental Biology, 2019, 222, .	1.7	14
28	A Millimeter-Wave Fundamental Frequency CMOS-Based Oscillator with High Output Power. Electronics (Switzerland), 2019, 8, 1228.	3.1	2
29	A Prototype of a Neural, Powered, Transtibial Prosthesis for the Cat: Benchtop Characterization. Frontiers in Neuroscience, 2018, 12, 471.	2.8	7
30	A real-time closed-loop control system for modulating gait characteristics via electrical stimulation of peripheral nerves. , $2016, , .$		11
31	Assessment of the Tongue-Drive System Using a Computer, a Smartphone, and a Powered-Wheelchair by People With Tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 68-78.	4.9	44
32	Qualitative assessment of Tongue Drive System by people with high-level spinal cord injury. Journal of Rehabilitation Research and Development, 2014, 51, 451-466.	1.6	25
33	An Arch-Shaped Intraoral Tongue Drive System with Built-in Tongue-Computer Interfacing SoC. Sensors, 2014, 14, 21565-21587.	3.8	24
34	Wireless Communication of Intraoral Devices and Its Optimal Frequency Selection. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 3205-3215.	4.6	20
35	A 13-bit noise shaping SAR–ADC with dual-polarity digital calibration. Analog Integrated Circuits and Signal Processing, 2013, 75, 459-465.	1.4	5
36	A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation. IEEE Journal of Solid-State Circuits, 2013, 48, 2203-2216.	5.4	177

#	Article	IF	CITATIONS
37	A Dual-Mode Human Computer Interface Combining Speech and Tongue Motion for People with Severe Disabilities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 979-991.	4.9	36
38	The Tongue Enables Computer and Wheelchair Control for People with Spinal Cord Injury. Science Translational Medicine, 2013, 5, 213ra166.	12.4	96
39	Dual-mode tongue drive system. , 2012, , .		4
40	Tongue-operated assistive technology with access to common smartphone applications via Bluetooth link. , 2012, 2012, 4054-7.		4
41	Intraoral tongue drive system demonstration. , 2012, , .		3
42	A wireless magnetoresistive sensing system for an intra-oral tongue-computer interface. , 2012, , .		7
43	A Wireless Magnetoresistive Sensing System for an Intraoral Tongue-Computer Interface. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 571-585.	4.0	65
44	Development and preliminary evaluation of an intraoral tongue drive system., 2012, 2012, 1157-60.		5
45	New ergonomic headset for tongue-drive system with wireless smartphone interface. , 2011, 2011, 7344-7.		5
46	Self-Calibrated Two-Point Delta–Sigma Modulation Technique for RF Transmitters. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 1748-1757.	4.6	32
47	An Inductorless CMOS 0.1-1GHz Automatic Gain Control Circuit. , 2008, , .		7