Delfim F M Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1744738/publications.pdf Version: 2024-02-01

DELEIM E M TOPPES

#	Article	IF	CITATIONS
1	Complex network model for COVID-19: Human behavior, pseudo-periodic solutions and multiple epidemic waves. Journal of Mathematical Analysis and Applications, 2022, 514, 125171.	1.0	32
2	Optimal control of a heroin epidemic mathematical model. Optimization, 2022, 71, 3107-3131.	1.7	3
3	Necessary optimality conditions of a reaction-diffusion SIR model with ABC fractional derivatives. Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 621.	1.1	3
4	Fractional Modelling and Optimal Control of COVID-19 Transmission in Portugal. Axioms, 2022, 11, 170.	1.9	9
5	Weighted Generalized Fractional Integration by Parts and the Euler–Lagrange Equation. Axioms, 2022, 11, 178.	1.9	2
6	Taylor's Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels. Axioms, 2022, 11, 231.	1.9	6
7	Existence Results for a Multipoint Fractional Boundary Value Problem in the Fractional Derivative Banach Space. Axioms, 2022, 11, 295.	1.9	0
8	Global stability of a diffusive SEIR epidemic model with distributed delay. , 2022, , 191-209.		0
9	Transport and optimal control of vaccination dynamics for COVID-19. , 2022, , 27-39.		1
10	Lyapunov functions and stability analysis of fractional-order systems. , 2022, , 125-136.		2
11	Stochastic SICA epidemic model with jump Lévy processes. , 2022, , 61-72.		1
12	Mathematical analysis, forecasting and optimal control of HIV/AIDS spatiotemporal transmission with a reaction diffusion SICA model. AIMS Mathematics, 2022, 7, 16519-16535.	1.6	1
13	Global Stability of a Caputo Fractional SIRS Model with General Incidence Rate. Mathematics in Computer Science, 2021, 15, 91-105.	0.4	19
14	A new spectral method based on two classes of hat functions for solving systems of fractional differential equations and an application to respiratory syncytial virus infection. Soft Computing, 2021, 25, 6745-6757.	3.6	8
15	Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelets. Numerical Algorithms, 2021, 86, 675-691.	1.9	10
16	A dynamically-consistent nonstandard finite difference scheme for the SICA model. Mathematical Biosciences and Engineering, 2021, 18, 4552-4571.	1.9	9
17	Modeling the Spread of Covid-19 Pandemic in Morocco. Infosys Science Foundation Series, 2021, , 599-615.	0.6	2
18	Farming awareness based optimum interventions for crop pest control. Mathematical Biosciences and Engineering, 2021, 18, 5364-5391.	1.9	11

#	Article	IF	CITATIONS
19	Focus point: cancer and HIV/AIDS dynamics—from optimality to modelling. European Physical Journal Plus, 2021, 136, 1.	2.6	8
20	Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations. Axioms, 2021, 10, 18.	1.9	33
21	Optimal control of the COVID-19 pandemic: controlled sanitary deconfinement in Portugal. Scientific Reports, 2021, 11, 3451.	3.3	56
22	Analysis of Hilfer Fractional Integro-Differential Equations with Almost Sectorial Operators. Fractal and Fractional, 2021, 5, 22.	3.3	23
23	Fractional model of COVID-19 applied to Galicia, Spain and Portugal. Chaos, Solitons and Fractals, 2021, 144, 110652.	5.1	60
24	Pest control using farming awareness: Impact of time delays and optimal use of biopesticides. Chaos, Solitons and Fractals, 2021, 146, 110869.	5.1	20
25	Mathematical Analysis of a Fractional COVID-19 Model Applied to Wuhan, Spain and Portugal. Axioms, 2021, 10, 135.	1.9	17
26	On a Non-Newtonian Calculus of Variations. Axioms, 2021, 10, 171.	1.9	7
27	Pontryagin Maximum Principle for Distributed-Order Fractional Systems. Mathematics, 2021, 9, 1883.	2.2	4
28	Control of COVID-19 dynamics through a fractional-order model. AEJ - Alexandria Engineering Journal, 2021, 60, 3587-3592.	6.4	40
29	Optimal Control Problems Involving Combined Fractional Operators with General Analytic Kernels. Mathematics, 2021, 9, 2355.	2.2	2
30	Cauchy's formula on nonempty closed sets and a new notion of Riemann–Liouville fractional integral on time scales. Applied Mathematics Letters, 2021, 121, 107407.	2.7	9
31	Stability analysis and optimal control of a fractional HIV-AIDS epidemic model with memory and general incidence rate. European Physical Journal Plus, 2021, 136, 1.	2.6	14
32	Hybrid Method for Simulation of a Fractional COVID-19 Model with Real Case Application. Axioms, 2021, 10, 290.	1.9	12
33	Optimal control of an HIV model with a trilinear antibody growth function. Discrete and Continuous Dynamical Systems - Series S, 2021, .	1.1	3
34	Nabla Fractional Derivative and Fractional Integral on Time Scales. Axioms, 2021, 10, 317.	1.9	4
35	Numerical Solution of Variable-Order Fractional Differential Equations Using Bernoulli Polynomials. Fractal and Fractional, 2021, 5, 219.	3.3	5
36	A Discrete-Time Compartmental Epidemiological Model for COVID-19 with a Case Study for Portugal. Axioms, 2021, 10, 314.	1.9	5

#	Article	IF	CITATIONS
37	Model-free based control of a HIV/AIDS prevention model. Mathematical Biosciences and Engineering, 2021, 19, 759-774.	1.9	2
38	Fractional-Order Modelling and Optimal Control of Cholera Transmission. Fractal and Fractional, 2021, 5, 261.	3.3	12
39	Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations. Chaos, Solitons and Fractals, 2020, 131, 109542.	5.1	20
40	Numerical Optimal Control of HIV Transmission in Octave/MATLAB. Mathematical and Computational Applications, 2020, 25, 1.	1.3	13
41	Corrigendum to "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan―[Chaos Solitons Fractals 135 (2020), 109846]. Chaos, Solitons and Fractals, 2020, 141, 110311.	5.1	32
42	Application of Bernoulli Polynomials for Solving Variable-Order Fractional Optimal Control-Affine Problems. Axioms, 2020, 9, 114.	1.9	6
43	A New Compartmental Epidemiological Model for COVID-19 with a Case Study of Portugal. Ecological Complexity, 2020, 44, 100885.	2.9	26
44	A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement strategy. Mathematical Modelling of Natural Phenomena, 2020, 15, 50.	2.4	15
45	Lyapunov functions for fractional-order systems in biology: Methods and applications. Chaos, Solitons and Fractals, 2020, 140, 110224.	5.1	42
46	A Stochastic Fractional Calculus with Applications to Variational Principles. Fractal and Fractional, 2020, 4, 38.	3.3	10
47	Distributed-Order Non-Local Optimal Control. Axioms, 2020, 9, 124.	1.9	4
48	Mathematical Modeling of Japanese Encephalitis under Aquatic Environmental Effects. Mathematics, 2020, 8, 1880.	2.2	3
49	The Stability and Stabilization of Infinite Dimensional Caputo-Time Fractional Differential Linear Systems. Mathematics, 2020, 8, 353.	2.2	3
50	Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons and Fractals, 2020, 135, 109846.	5.1	463
51	On SICA Models for HIV Transmission. Studies in Systems, Decision and Control, 2020, , 155-179.	1.0	3
52	Optimal Control of Aquatic Diseases: A Case Study of Yemen's Cholera Outbreak. Journal of Optimization Theory and Applications, 2020, 185, 1008-1030.	1.5	18
53	Regional enlarged observability of Caputo fractional differential equations. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 1017-1029.	1.1	3
54	On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. Mathematical Inequalities and Applications, 2020, , 95-105.	0.2	10

#	Article	IF	CITATIONS
55	A New Mathematical Model for the Efficiency Calculation. Studies in Systems, Decision and Control, 2020, , 113-122.	1.0	0
56	Parametric Identification of the Dynamics of Inter-Sectoral Balance: Modelling and Forecasting. Studies in Systems, Decision and Control, 2020, , 133-143.	1.0	0
57	Errata to "Modeling and optimal control of HIV/AIDS prevention through PrEP", Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 1,119–141. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 1619-1621.	1.1	1
58	A Survey on Sufficient Optimality Conditions for Delayed Optimal Control Problems. Studies in Systems, Decision and Control, 2020, , 323-342.	1.0	0
59	Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Communications in Nonlinear Science and Numerical Simulation, 2019, 67, 334-350.	3.3	56
60	The Variable-Order Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.4	78
61	Expansion Formulas for Fractional Derivatives. SpringerBriefs in Applied Sciences and Technology, 2019, , 33-59.	0.4	Ο
62	The Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, 2019, , 61-113.	0.4	1
63	Fractional Calculus. SpringerBriefs in Applied Sciences and Technology, 2019, , 1-19.	0.4	2
64	Optimal Impulse Control of Dynamical Systems. SIAM Journal on Control and Optimization, 2019, 57, 2720-2752.	2.1	9
65	A finite element approximation for a class of Caputo time-fractional diffusion equations. Computers and Mathematics With Applications, 2019, 78, 1334-1344.	2.7	26
66	Stability of a fractional HIV/AIDS model. Mathematics and Computers in Simulation, 2019, 164, 180-190.	4.4	49
67	A numerical approach for solving fractional optimal control problems using modified hat functions. Communications in Nonlinear Science and Numerical Simulation, 2019, 78, 104849.	3.3	41
68	A collocation method of lines for twoâ€sided spaceâ€fractional advectionâ€diffusion equations with variable coefficients. Mathematical Methods in the Applied Sciences, 2019, 42, 3465-3480.	2.3	4
69	Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives. Computers and Mathematics With Applications, 2019, 78, 1507-1516.	2.7	9
70	Functional characterizations of trace spaces in Lipschitz domains. Banach Journal of Mathematical Analysis, 2019, 13, 407-426.	0.8	4
71	Variable Order Mittagâ \in "Leffler Fractional Operators on Isolated Time Scales and Application to the Calculus of Variations. Studies in Systems, Decision and Control, 2019, , 35-47.	1.0	2
72	Solutions of systems with the Caputo–Fabrizio fractional delta derivative on time scales. Nonlinear Analysis: Hybrid Systems, 2019, 32, 168-176.	3.5	30

#	Article	IF	CITATIONS
73	A space–time pseudospectral discretization method for solving diffusion optimal control problems with two-sided fractional derivatives. JVC/Journal of Vibration and Control, 2019, 25, 1080-1095.	2.6	12
74	Exact solution to a dynamic SIR model. Nonlinear Analysis: Hybrid Systems, 2019, 32, 228-238.	3.5	43
75	Fractional Order Version of the Hamilton–Jacobi–Bellman Equation. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1.2	3
76	Some inequalities for interval-valued functions on time scales. Soft Computing, 2019, 23, 6005-6015.	3.6	26
77	Time-Fractional Optimal Control of Initial Value Problems on Time Scales. Springer Proceedings in Mathematics and Statistics, 2019, , 229-242.	0.2	4
78	Analysis of fractional integro-differential equations of thermistor type. , 2019, , 327-346.		3
79	A survey on fractional variational calculus. , 2019, , 347-360.		1
80	Analysis of a SIRI Epidemic Model with Distributed Delay and Relapse. Statistics, Optimization and Information Computing, 2019, 7, .	0.7	13
81	The Risk of Contagion Spreading and its Optimal Control in the Economy. Statistics, Optimization and Information Computing, 2019, 7, .	0.7	2
82	A Minimal HIV-AIDS Infection Model with General Incidence Rate and Application to Morocco Data. Statistics, Optimization and Information Computing, 2019, 7, .	0.7	7
83	Optimal Control and Sensitivity Analysis of a Fractional Order TB Model. Statistics, Optimization and Information Computing, 2019, 7, .	0.7	12
84	The spread of a financial virus through Europe and beyond. AIMS Mathematics, 2019, 4, 86-98.	1.6	6
85	A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 2293-2313.	0.9	1
86	The Portuguese Meeting in Biomathematics. Statistics, Optimization and Information Computing, 2019, 7, .	0.7	0
87	The effect of immigrant communities coming from higher incidence tuberculosis regions to a host country. Ricerche Di Matematica, 2018, 67, 89-112.	1.0	7
88	Analysis and Optimal Control of an Intracellular Delayed HIV Model with CTL Immune Response. Mathematics in Computer Science, 2018, 12, 111-127.	0.4	20
89	Banking Risk as an Epidemiological Model: An Optimal Control Approach. Springer Proceedings in Mathematics and Statistics, 2018, , 165-176.	0.2	7
90	Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil. Mathematical Methods in the Applied Sciences, 2018, 41, 8929-8941.	2.3	41

#	Article	IF	CITATIONS
91	Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem. Computational and Applied Mathematics, 2018, 37, 2112-2128.	1.3	13
92	Combined fractional variational problems of variable order and some computational aspects. Journal of Computational and Applied Mathematics, 2018, 339, 374-388.	2.0	16
93	Lyapunov-type inequality for a fractional boundary value problem with natural conditions. SeMA Journal, 2018, 75, 157-162.	2.0	14
94	Stability and optimal control of a delayed HIV model. Mathematical Methods in the Applied Sciences, 2018, 41, 2251-2260.	2.3	36
95	Existence and uniqueness results for a fractional Riemann–Liouville nonlocal thermistor problem on arbitrary time scales. Journal of King Saud University - Science, 2018, 30, 381-385.	3.5	13
96	Existence theorems for a nonlinear second-order distributional differential equation. Journal of King Saud University - Science, 2018, 30, 527-530.	3.5	4
97	A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. Journal of Computational and Applied Mathematics, 2018, 339, 3-29.	2.0	134
98	Enlarged Controllability of Riemann–Liouville Fractional Differential Equations. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	9
99	Regional Enlarged Observability of Fractional Differential Equations with Riemann—Liouville Time Derivatives. Axioms, 2018, 7, 92.	1.9	2
100	Novel Results on Hermite–Hadamard Kind Inequalities for \$\$eta \$\$-Convex Functions by Means of (k,Âr)-Fractional Integral Operators. Trends in Mathematics, 2018, , 311-321.	0.1	9
101	Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection. Chaos, Solitons and Fractals, 2018, 117, 142-149.	5.1	51
102	Uniform asymptotic stability of a fractional tuberculosis model. Mathematical Modelling of Natural Phenomena, 2018, 13, 9.	2.4	31
103	A stochastic SICA epidemic model for HIV transmission. Applied Mathematics Letters, 2018, 84, 168-175.	2.7	80
104	The Fuzzy Henstock–Kurzweil Delta Integral on Time Scales. Springer Proceedings in Mathematics and Statistics, 2018, , 525-541.	0.2	1
105	Approximate controllability of impulsive non-local non-linear fractional dynamical systems and optimal control. Miskolc Mathematical Notes, 2018, 19, 255.	0.6	3
106	A simple mathematical model for unemployment: a case study in Portugal with optimal control. Statistics, Optimization and Information Computing, 2018, 6, .	0.7	6
107	Parameter Estimation, Sensitivity Analysis and Optimal Control of a Periodic Epidemic Model with Application to HRSV in Florida. Statistics, Optimization and Information Computing, 2018, 6, .	0.7	24
108	Optimal control of a delayed HIV model. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 443-458.	0.9	7

#	Article	IF	CITATIONS
109	A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 59-76.	1.1	8
110	Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 91-102.	1.1	12
111	Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 119-141.	1.1	22
112	Fractional Herglotz variational problems of variable order. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 143-154.	1.1	13
113	Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 1179-1199.	1.1	6
114	Ebola model and optimal control with vaccination constraints. Journal of Industrial and Management Optimization, 2018, 14, 427-446.	1.3	46
115	A cholera mathematical model with vaccination and the biggest outbreak of world's history. AIMS Mathematics, 2018, 3, 448-463.	1.6	25
116	Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15, 1435-1463.	1.9	44
117	Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities. Opuscula Mathematica, 2018, 38, 31.	0.8	13
118	The Cape Verde International Days on Mathematics 2017. Statistics, Optimization and Information Computing, 2018, 6, .	0.7	0
119	Structural derivatives on time scales. Communications Faculty of Science University of Ankara Series A1Mathematics and Statistics, 2018, 68, 1186-1196.	0.5	2
120	Existence of solution to a nonlocal conformable fractional thermistor problem. Communications Faculty of Science University of Ankara Series A1Mathematics and Statistics, 2018, 68, 1061-1072.	0.5	3
121	Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type with Nonlocal Nonlinear Fractional Differential Equations. Journal of Optimization Theory and Applications, 2017, 174, 7-31.	1.5	34
122	Existence of solution to a local fractional nonlinear differential equation. Journal of Computational and Applied Mathematics, 2017, 312, 127-133.	2.0	72
123	A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems. Journal of Optimization Theory and Applications, 2017, 174, 156-175.	1.5	32
124	Predicting and controlling the Ebola infection. Mathematical Methods in the Applied Sciences, 2017, 40, 6155-6164.	2.3	30
125	Galerkin spectral method for the fractional nonlocal thermistor problem. Computers and Mathematics With Applications, 2017, 73, 1077-1086.	2.7	6
126	A generalized Lyapunov's inequality for a fractional boundary value problem. Journal of Computational and Applied Mathematics, 2017, 312, 192-197.	2.0	38

#	Article	IF	CITATIONS
127	Constrained fractional variational problems of variable order. IEEE/CAA Journal of Automatica Sinica, 2017, 4, 80-88.	13.1	11
128	Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales. Arabian Journal of Mathematics, 2017, 6, 13-20.	0.9	21
129	A fractional Gauss–Jacobi quadrature rule for approximating fractional integrals and derivatives. Chaos, Solitons and Fractals, 2017, 102, 295-304.	5.1	7
130	Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos, Solitons and Fractals, 2017, 102, 94-98.	5.1	23
131	Non-differentiable Solutions for Local Fractional Nonlinear Riccati Differential Equations. Fundamenta Informaticae, 2017, 151, 409-417.	0.4	14
132	Variational calculus with conformable fractional derivatives. IEEE/CAA Journal of Automatica Sinica, 2017, 4, 340-352.	13.1	55
133	A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde. Ecological Complexity, 2017, 30, 70-75.	2.9	56
134	Optimal Spraying in Biological Control of Pests. Mathematical Modelling of Natural Phenomena, 2017, 12, 51-64.	2.4	7
135	Symmetric duality for left and right Riemann–Liouville and Caputo fractional differences. Arab Journal of Mathematical Sciences, 2017, 23, 157-172.	0.4	15
136	An epidemic model for cholera with optimal control treatment. Journal of Computational and Applied Mathematics, 2017, 318, 168-180.	2.0	60
137	Linear and Nonlinear Fractional Voigt Models. Lecture Notes in Electrical Engineering, 2017, , 157-167.	0.4	3
138	Generalized fractional operators on time scales with application to dynamic equations. European Physical Journal: Special Topics, 2017, 226, 3489-3499.	2.6	15
139	Mathematical Modeling and Control of Infectious Diseases. Computational and Mathematical Methods in Medicine, 2017, 2017, 1-1.	1.3	10
140	Hyperchaotic Fractional-Order Systems and Their Applications. Complexity, 2017, 2017, 1-1.	1.6	1
141	Global existence of solutions for a fractional Caputo nonlocal thermistor problem. Advances in Difference Equations, 2017, 2017, .	3.5	2
142	Direct and Inverse Variational Problems on Time Scales: A Survey. Springer Proceedings in Mathematics and Statistics, 2017, , 223-265.	0.2	4
143	On a Fractional Oscillator Equation with Natural Boundary Conditions. Progress in Fractional Differentiation and Applications, 2017, 3, 191-197.	0.6	19
144	On the Henstock-Kurzweil integral for Riesz-space-valued functions on time scales. Journal of Nonlinear Science and Applications, 2017, 10, 2487-2500.	1.0	3

#	Article	IF	CITATIONS
145	General fractional-order anomalous diffusion with non-singular power-law kernel. Thermal Science, 2017, 21, 1-9.	1.1	32
146	Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences and Engineering, 2017, 14, 321-337.	1.9	53
147	Generalized weighted Ostrowski and Ostrowski-Grüss type inequalities on time scales via a parameter function. Journal of Mathematical Inequalities, 2017, , 1185-1199.	0.9	7
148	Helmholtz Theorem for Nondifferentiable Hamiltonian Systems in the Framework of Cresson's Quantum Calculus. Discrete Dynamics in Nature and Society, 2016, 2016, 1-8.	0.9	0
149	Exponentials and Laplace transforms on nonuniform time scales. Communications in Nonlinear Science and Numerical Simulation, 2016, 39, 252-270.	3.3	24
150	Complex-Valued Fractional Derivatives on Time Scales. Springer Proceedings in Mathematics and Statistics, 2016, , 79-87.	0.2	8
151	Approximated analytical solution to an Ebola optimal control problem. International Journal for Computational Methods in Engineering Science and Mechanics, 2016, 17, 382-390.	2.1	8
152	Dynamics and Optimal Control of Ebola Transmission. Mathematics in Computer Science, 2016, 10, 331-342.	0.4	58
153	Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control. Mathematical Methods in the Applied Sciences, 2016, 39, 4671-4679.	2.3	32
154	Caputo derivatives of fractional variable order: Numerical approximations. Communications in Nonlinear Science and Numerical Simulation, 2016, 35, 69-87.	3.3	142
155	Existence and uniqueness of solution for a fractional Riemann–Liouville initial value problem on time scales. Journal of King Saud University - Science, 2016, 28, 87-92.	3.5	36
156	A conformable fractional calculus on arbitrary time scales. Journal of King Saud University - Science, 2016, 28, 93-98.	3.5	143
157	Nonsymmetric and symmetric fractional calculi on arbitrary nonempty closed sets. Mathematical Methods in the Applied Sciences, 2016, 39, 261-279.	2.3	15
158	A Hukuhara approach to the study of hybrid fuzzy systems on time scales. Applicable Analysis and Discrete Mathematics, 2016, 10, 152-167.	0.7	10
159	Mathematical Modelling, Simulation, and Optimal Control of the 2014 Ebola Outbreak in West Africa. Discrete Dynamics in Nature and Society, 2015, 2015, 1-9.	0.9	83
160	Sobolev Type Fractional Dynamic Equations and Optimal Multi-Integral Controls with Fractional Nonlocal Conditions. Fractional Calculus and Applied Analysis, 2015, 18, 95-121.	2.2	68
161	Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure. Applied Mathematics and Computation, 2015, 257, 374-380.	2.2	28
162	Advanced Methods in the Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, 2015, , .	0.4	98

#	Article	IF	CITATIONS
163	Fractional Calculus. SpringerBriefs in Applied Sciences and Technology, 2015, , 7-21.	0.4	2
164	Computing Hadamard type operators of variable fractional order. Applied Mathematics and Computation, 2015, 257, 74-88.	2.2	16
165	Generalized fractional operators for nonstandard Lagrangians. Mathematical Methods in the Applied Sciences, 2015, 38, 1808-1812.	2.3	6
166	Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order. Optimization, 2015, 64, 1381-1391.	1.7	21
167	The Diamond Integral on Time Scales. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38, 1453-1462.	0.9	20
168	Multiobjective approach to optimal control for a tuberculosis model. Optimization Methods and Software, 2015, 30, 893-910.	2.4	20
169	Coexistence of two dengue virus serotypes and forecasting for Madeira Island. Operations Research for Health Care, 2015, 7, 122-131.	1.2	9
170	Duality for the left and right fractional derivatives. Signal Processing, 2015, 107, 265-271.	3.7	40
171	Solving Abel integral equations of first kind via fractional calculus. Journal of King Saud University - Science, 2015, 27, 161-167.	3.5	25
172	A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Processing, 2015, 107, 230-237.	3.7	65
173	A discrete method to solve fractional optimal control problems. Nonlinear Dynamics, 2015, 80, 1811-1816.	5.2	64
174	Optimal Control of Tuberculosis: A Review. CIM Series in Mathematical Sciences, 2015, , 701-722.	0.4	12
175	An Optimal Control Approach to Herglotz Variational Problems. Communications in Computer and Information Science, 2015, , 107-117.	0.5	12
176	Multiobjective approach to optimal control for a dengue transmission model. Statistics, Optimization and Information Computing, 2015, 3, .	0.7	3
177	Variational problems of Herglotz type with time delay: DuBoisReymond condition and Noether's first theorem. Discrete and Continuous Dynamical Systems, 2015, 35, 4593-4610.	0.9	36
178	A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete and Continuous Dynamical Systems, 2015, 35, 4639-4663.	0.9	64
179	Dengue in Madeira Island. CIM Series in Mathematical Sciences, 2015, , 593-605.	0.4	4
180	Standard Methods in Fractional Variational Calculus. SpringerBriefs in Applied Sciences and Technology, 2015, , 31-82.	0.4	0

#	Article	IF	CITATIONS
181	Multiobjective approach to optimal control for a dengue transmission model. Statistics, Optimization and Information Computing, 2015, 3, .	0.7	1
182	Necessary Condition for an Euler-Lagrange Equation on Time Scales. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	2
183	Modeling TB-HIV Syndemic and Treatment. Journal of Applied Mathematics, 2014, 2014, 1-14.	0.9	8
184	Optimal Control with Time Delays via the Penalty Method. Mathematical Problems in Engineering, 2014, 2014, 1-9.	1.1	4
185	Fractional and Time-Scales Differential Equations. Abstract and Applied Analysis, 2014, 2014, 1-2.	0.7	2
186	A general delta-nabla calculus of variations on time scales with application to economics. International Journal of Dynamical Systems and Differential Equations, 2014, 5, 42.	0.0	7
187	Cost-Effectiveness Analysis of Optimal Control Measures for Tuberculosis. Bulletin of Mathematical Biology, 2014, 76, 2627-2645.	1.9	60
188	Quantum Variational Calculus. Springer Briefs in Electrical and Computer Engineering, 2014, , .	0.5	20
189	Vaccination models and optimal control strategies to dengue. Mathematical Biosciences, 2014, 247, 1-12.	1.9	169
190	Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Applied Mathematics and Computation, 2014, 243, 161-175.	2.2	67
191	Higher-Order Variational Problems of Herglotz Type. Vietnam Journal of Mathematics, 2014, 42, 409-419.	0.8	22
192	The Legendre condition of the fractional calculus of variations. Optimization, 2014, 63, 1157-1165.	1.7	12
193	Noether's theorem for non-smooth extremals of variational problems with time delay. Applicable Analysis, 2014, 93, 153-170.	1.3	21
194	Fractional order optimal control problems with free terminal time. Journal of Industrial and Management Optimization, 2014, 10, 363-381.	1.3	92
195	The Classical Calculus of Variations. Springer Briefs in Electrical and Computer Engineering, 2014, , 1-7.	0.5	0
196	Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. International Journal of Control, 2013, 86, 1577-1585.	1.9	60
197	Fractional Isoperimetric Noether's Theorem in the Riemann–Liouville Sense. Reports on Mathematical Physics, 2013, 71, 291-304	0.8	14
198	A discrete time method to the first variation of fractional order variational functionals. Open Physics, 2013, 11, .	1.7	4

#	Article	IF	CITATIONS
199	Noetherâ $€$ ™s theorem for fractional variational problems of variable order. Open Physics, 2013, 11, .	1.7	22
200	The DuBois–Reymond Fundamental Lemma of the Fractional Calculus of Variations and an Euler–Lagrange Equation Involving Only Derivatives of Caputo. Journal of Optimization Theory and Applications, 2013, 156, 56-67.	1.5	20
201	Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Mathematical Biosciences, 2013, 244, 154-164.	1.9	85
202	Green's theorem for generalized fractional derivatives. Fractional Calculus and Applied Analysis, 2013, 16, 64-75.	2.2	19
203	Numerical approximations of fractional derivatives with applications. Asian Journal of Control, 2013, 15, 698-712.	3.0	59
204	Discrete direct methods in the fractional calculus of variations. Computers and Mathematics With Applications, 2013, 66, 668-676.	2.7	46
205	Control of a novel chaotic fractional order system using a state feedback technique. Mechatronics, 2013, 23, 755-763.	3.3	20
206	Symmetric differentiation on time scales. Applied Mathematics Letters, 2013, 26, 264-269.	2.7	25
207	Fractional calculus of variations of several independent variables. European Physical Journal: Special Topics, 2013, 222, 1813-1826.	2.6	9
208	Existence of Three Positive Solutions to Somep-Laplacian Boundary Value Problems. Discrete Dynamics in Nature and Society, 2013, 2013, 1-12.	0.9	0
209	Bioeconomic perspectives to an optimal control dengue model. International Journal of Computer Mathematics, 2013, 90, 2126-2136.	1.8	20
210	Dengue in Cape Verde: Vector Control and Vaccination. Mathematical Population Studies, 2013, 20, 208-223.	2.2	19
211	An Optimal Control Approach to Malaria Prevention via Insecticide-Treated Nets. Conference Papers in Mathematics, 2013, 2013, 1-8.	0.5	12
212	Sensitivity Analysis in a Dengue Epidemiological Model. Conference Papers in Mathematics, 2013, 2013, 1-7.	0.5	50
213	Free time fractional optimal control problems. , 2013, , .		10
214	The Cape Verde International Days on Mathematics 2013. Conference Papers in Mathematics, 2013, 2013, 1-2.	0.5	0
215	An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order. Scientific World Journal, The, 2013, 2013, 1-11.	2.1	8
216	A Numerical Scheme to Solve Fractional Optimal Control Problems. Conference Papers in Mathematics, 2013, 2013, 1-10.	0.5	11

#	Article	IF	CITATIONS
217	A Symmetric Quantum Calculus. Springer Proceedings in Mathematics and Statistics, 2013, , 359-366.	0.2	4
218	A Symmetric Nörlund Sum with Application to Inequalities. Springer Proceedings in Mathematics and Statistics, 2013, , 495-503.	0.2	3
219	Fractional Variational Calculus of Variable Order. , 2013, , 291-301.		31
220	Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control and Optimization, 2013, 3, 145-160.	1.6	4
221	Hahn's symmetric quantum variational calculus. Numerical Algebra, Control and Optimization, 2013, 3, 77-94.	1.6	11
222	Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics. Abstract and Applied Analysis, 2012, 2012, 1-24.	0.7	46
223	Dengue disease, basic reproduction number and control. International Journal of Computer Mathematics, 2012, 89, 334-346.	1.8	56
224	Expansion Formulas in Terms of Integer-Order Derivatives for the Hadamard Fractional Integral and Derivative. Numerical Functional Analysis and Optimization, 2012, 33, 301-319.	1.4	59
225	Fractional Noether's theorem with classical and Riemann-Liouville derivatives. , 2012, , .		4
226	Variable order fractional variational calculus for double integrals. , 2012, , .		8
227	Generalized fractional calculus with applications to the calculus of variations. Computers and Mathematics With Applications, 2012, 64, 3351-3366.	2.7	51
228	Necessary Optimality Conditions for Higher-Order Infinite Horizon Variational Problems on Time Scales. Journal of Optimization Theory and Applications, 2012, 155, 453-476.	1.5	14
229	Optimal control of nonlocal thermistor equations. International Journal of Control, 2012, 85, 1789-1801.	1.9	10
230	The existence of solutions for dynamic inclusions on time scales via duality. Applied Mathematics Letters, 2012, 25, 1632-1637.	2.7	14
231	The contingent epiderivative and the calculus of variations on time scales. Optimization, 2012, 61, 251-264.	1.7	14
232	Higher-order infinite horizon variational problems in discrete quantum calculus. Computers and Mathematics With Applications, 2012, 64, 2166-2175.	2.7	9
233	Approximation of fractional integrals by means of derivatives. Computers and Mathematics With Applications, 2012, 64, 3090-3100.	2.7	39
234	Time scale differential, integral, and variational embeddings of Lagrangian systems. Computers and Mathematics With Applications, 2012, 64, 2294-2301.	2.7	16

#	Article	IF	CITATIONS
235	Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Applied Mathematics and Computation, 2012, 218, 5099-5111.	2.2	30
236	Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 1507-1515.	1.1	106
237	Higher-order Hahn's quantum variational calculus. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 1147-1157.	1.1	22
238	Fractional variational problems depending on indefinite integrals. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 1009-1025.	1.1	53
239	Isoperimetric problems of the calculus of variations with fractional derivatives. Acta Mathematica Scientia, 2012, 32, 619-630.	1.0	17
240	Towards a combined fractional mechanics and quantization. Fractional Calculus and Applied Analysis, 2012, 15, 407-417.	2.2	27
241	Fractional Euler–Lagrange Differential Equations via Caputo Derivatives. , 2012, , 109-118.		12
242	Optimal control strategies for tuberculosis treatment: A case study in Angola. Numerical Algebra, Control and Optimization, 2012, 2, 601-617.	1.6	30
243	Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2, 619-630.	1.6	34
244	Existence and uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order derivatives. Differential Equations and Applications, 2012, , 267-276.	0.4	2
245	The Second Euler-Lagrange Equation of Variational Calculus on Time Scales. European Journal of Control, 2011, 17, 9-18.	2.6	42
246	Backward Variational Approach on Time Scales with an Action Depending on the Free Endpoints. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2011, 66, 401-410.	1.5	6
247	Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29, 417-437.	0.9	105
248	Fractional Derivatives in Dengue Epidemics. AIP Conference Proceedings, 2011, , .	0.4	42
249	Optimal Control of a Dengue Epidemic Model with Vaccination. , 2011, , .		1
250	Fractional calculus of variations for a combined Caputo derivative. Fractional Calculus and Applied Analysis, 2011, 14, 523-537.	2.2	61
251	Generalizing the variational theory on time scales to include the delta indefinite integral. Computers and Mathematics With Applications, 2011, 61, 2424-2435.	2.7	21
252	Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1490-1500.	3.3	182

#	Article	IF	CITATIONS
253	Transversality conditions for infinite horizon variational problems on time scales. Optimization Letters, 2011, 5, 41-53.	1.6	66
254	A general backwards calculus of variations via duality. Optimization Letters, 2011, 5, 587-599.	1.6	11
255	Nondifferentiable variational principles in terms of a quantum operator. Mathematical Methods in the Applied Sciences, 2011, 34, n/a-n/a.	2.3	4
256	Fractional variational calculus for nondifferentiable functions. Computers and Mathematics With Applications, 2011, 61, 3097-3104.	2.7	40
257	Optimality conditions for the calculus of variations with higher-order delta derivatives. Applied Mathematics Letters, 2011, 24, 87-92.	2.7	20
258	Discrete-time fractional variational problems. Signal Processing, 2011, 91, 513-524.	3.7	188
259	Modified optimal energy and initial memory of fractional continuous-time linear systems. Signal Processing, 2011, 91, 379-385.	3.7	61
260	Fractional h-difference equations arising from the calculus of variations. Applicable Analysis and Discrete Mathematics, 2011, 5, 110-121.	0.7	134
261	Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29, 577-593.	0.9	16
262	Inequalities and majorisations for the Riemann-Stieltjes integral on time scales. Mathematical Inequalities and Applications, 2011, , 281-293.	0.2	1
263	Necessary conditions for linear noncooperative N-player delta differential games on time scales. Discussiones Mathematicae: Differential Inclusions, Control and Optimization, 2011, 31, 23.	0.4	2
264	A non-classical class of variational problems. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1, 227.	0.2	11
265	Noether's symmetry theorem for nabla problems of the calculus of variations. Applied Mathematics Letters, 2010, 23, 1432-1438.	2.7	39
266	Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Computers and Mathematics With Applications, 2010, 59, 3110-3116.	2.7	94
267	Avoidance Control on Time Scales. Journal of Optimization Theory and Applications, 2010, 145, 527-542.	1.5	17
268	The Hahn Quantum Variational Calculus. Journal of Optimization Theory and Applications, 2010, 147, 419-442.	1.5	55
269	Generalized Euler–Lagrange Equations for Variational Problems with Scale Derivatives. Letters in Mathematical Physics, 2010, 92, 221-229.	1.1	5
270	Natural boundary conditions in the calculus of variations. Mathematical Methods in the Applied Sciences, 2010, 33, 1712-1722.	2.3	33

#	Article	IF	CITATIONS
271	Dynamics of Dengue epidemics when using optimal control. Mathematical and Computer Modelling, 2010, 52, 1667-1673.	2.0	58
272	Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales. Applied Mathematics and Computation, 2010, 217, 1158-1162.	2.2	29
273	Fractional Noether's theorem in the Riesz–Caputo sense. Applied Mathematics and Computation, 2010, 217, 1023-1033.	2.2	121
274	Leitmann's direct method for fractional optimization problems. Applied Mathematics and Computation, 2010, 217, 956-962.	2.2	35
275	Backward linear control systems on time scales. International Journal of Control, 2010, 83, 1573-1580.	1.9	10
276	Insecticide Control in a Dengue Epidemics Model. AIP Conference Proceedings, 2010, , .	0.4	11
277	A fractional calculus of variations for multiple integrals with application to vibrating string. Journal of Mathematical Physics, 2010, 51, .	1.1	100
278	A unified approach to the calculus of variations on time scales. , 2010, , .		4
279	Integral inequalities and their applications to the calculus of variations on Time Scales. Mathematical Inequalities and Applications, 2010, , 511-522.	0.2	9
280	Generalizations of Gronwall–Bihari inequalities on time scales. Journal of Difference Equations and Applications, 2009, 15, 529-539.	1.1	21
281	The Natural Logarithm on Time Scales. Journal of Dynamical Systems and Geometric Theories, 2009, 7, 41-48.	0.2	7
282	Strong minimizers of the calculus of variations on time scales and the Weierstrass condition. Proceedings of the Estonian Academy of Sciences, 2009, 58, 205.	1.5	19
283	Optimization of Dengue Epidemics: A Test Case with Different Discretization Schemes. , 2009, , .		8
284	Calculus of variations with fractional derivatives and fractional integrals. Applied Mathematics Letters, 2009, 22, 1816-1820.	2.7	142
285	Computing ODE symmetries as abnormal variational symmetries. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, e138-e146.	1.1	5
286	Combined dynamic Grüss inequalities on time scales. Journal of Mathematical Sciences, 2009, 161, 792-802.	0.4	10
287	Necessary and sufficient conditions for local Pareto optimality on time scales. Journal of Mathematical Sciences, 2009, 161, 803-810.	0.4	24
288	On the two-dimensional rotational body of maximal Newtonian resistance. Journal of Mathematical Sciences, 2009, 161, 811-819.	0.4	0

#	Article	IF	CITATIONS
289	Calculus of variations on time scales with nabla derivatives. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, e763-e773.	1.1	66
290	Hölderian variational problems subject to integral constraints. Journal of Mathematical Analysis and Applications, 2009, 359, 674-681.	1.0	29
291	Two-dimensional body of maximum mean resistance. Applied Mathematics and Computation, 2009, 215, 37-52.	2.2	10
292	Generalized retarded integral inequalities. Applied Mathematics Letters, 2009, 22, 876-881.	2.7	40
293	Isoperimetric Problems on Time Scales with Nabla Derivatives. JVC/Journal of Vibration and Control, 2009, 15, 951-958.	2.6	57
294	Constants of motion for non-differentiable quantum variational problems. Topological Methods in Nonlinear Analysis, 2009, 33, 217.	0.2	37
295	Noether's theorem on time scales. Journal of Mathematical Analysis and Applications, 2008, 342, 1220-1226.	1.0	88
296	Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem. Mathematics and Computers in Simulation, 2008, 77, 291-300.	4.4	13
297	Fractional conservation laws in optimal control theory. Nonlinear Dynamics, 2008, 53, 215-222.	5.2	201
298	Contrasting Two Transformation-based Methods for Obtaining Absolute Extrema. Journal of Optimization Theory and Applications, 2008, 137, 53-59.	1.5	11
299	Computational Approach to Essential and Nonessential Objective Functions in Linear Multicriteria Optimization. Journal of Optimization Theory and Applications, 2008, 139, 577-590.	1.5	7
300	Dynamics of controlled hybrid systems of aerial cable-ways. Nonlinear Analysis: Hybrid Systems, 2008, 2, 431-440.	3.5	3
301	Fractional actionlike variational problems. Journal of Mathematical Physics, 2008, 49, 053521.	1.1	148
302	Regularity of solutions to higher-order integrals of the calculus of variations. International Journal of Systems Science, 2008, 39, 889-895.	5.5	3
303	Diamond- Jensen's Inequality on Time Scales. Journal of Inequalities and Applications, 2008, 2008, 576876.	1.1	34
304	Higher-Order Calculus of Variations on Time Scales. , 2008, , 149-159.		36
305	CONSERVATION LAWS FOR INVARIANT FUNCTIONALS CONTAINING COMPOSITIONS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 300-305.	0.4	0
306	Conservation laws for invariant functionals containing compositions§. Applicable Analysis, 2007, 86, 1117-1126.	1.3	11

#	Article	IF	CITATIONS
307	Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann–Liouville derivatives of order (α, β). Mathematical Methods in the Applied Sciences, 2007, 30, 1931-1939.	2.3	94
308	Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem. Journal of Optimization Theory and Applications, 2007, 135, 135-143.	1.5	4
309	A formulation of Noether's theorem for fractional problems of the calculus of variations. Journal of Mathematical Analysis and Applications, 2007, 334, 834-846.	1.0	225
310	NOETHER'S THEOREM FOR FRACTIONAL OPTIMAL CONTROL PROBLEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 79-84.	0.4	3
311	A Noether Theorem on Unimprovable Conservation Laws for Vector-Valued Optimization Problems in Control Theory. Georgian Mathematical Journal, 2006, 13, 173-182.	0.6	8
312	A Dual Mesh Method for a Non-Local Thermistor Problem. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2006, , .	0.5	0
313	Analysis of vibrations in large flexible hybrid systems. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, 350-363.	1.1	2
314	Newton's aerodynamic problem in media of chaotically moving particles. Sbornik Mathematics, 2005, 196, 885-933.	0.6	21
315	Automatic Computation of Conservation Laws in the Calculus of Variations and Optimal Control. Computational Methods in Applied Mathematics, 2005, 5, 387-409.	0.8	13
316	Carathéodory Equivalence, Noether Theorems, and Tonelli Full-Regularity in the Calculus of Variations and Optimal Control. Journal of Mathematical Sciences, 2004, 120, 1032-1050.	0.4	20
317	Lipschitzian Regularity of the Minimizing Trajectories for Nonlinear Optimal Control Problems. Mathematics of Control, Signals, and Systems, 2003, 16, 158-174.	2.3	10
318	Integrals of Motion for Discrete-Time Optimal Control Problems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 33-38.	0.4	2
319	A Proper Extension of Noether's Symmetry Theorem for Nonsmooth Extremals of the Calculus of Variations. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 195-198.	0.4	2
320	On the Noether Theorem for Optimal Control. European Journal of Control, 2002, 8, 56-63.	2.6	55
321	Conservation Laws in Optimal Control. , 2002, , 287-296.		18
322	On the Noether theorem for optimal control. , 2001, , .		0
323	Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics. Applied Mathematics and Optimization, 2000, 41, 237-254.	1.6	32
324	Weak conservation laws for minimizers which are not pontryagin extremals. , 0, , .		2

#	Article	IF	CITATIONS
325	Controlling crop pest with a farming awareness based integrated approach and optimal control. Computational and Mathematical Methods, 0, , .	0.8	3
326	A non-Newtonian Noether's symmetry theorem. Applicable Analysis, 0, , 1-8.	1.3	0