J JesÃ^os Naveja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1744461/publications.pdf Version: 2024-02-01

Ι Ιεςδος Νανεία

#	Article	IF	CITATIONS
1	Chemoinformatic Characterization of Synthetic Screening Libraries Focused on Epigenetic Targets. Molecular Informatics, 2022, 41, e2100285.	2.5	10
2	Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Drug Discovery Today, 2021, 26, 229-239.	6.4	23
3	DiaNat-DB: a molecular database of antidiabetic compounds from medicinal plants. RSC Advances, 2021, 11, 5172-5178.	3.6	26
4	Cambios y estrategias de la educación médica en respuesta a la pandemia por COVID-19. Investigación En Educación Médica, 2021, 10, 79-95.	0.2	3
5	Automatic Identification of Analogue Series from Large Compound Data Sets: Methods and Applications. Molecules, 2021, 26, 5291.	3.8	6
6	Consistent Cellâ€selective Analog Series as Constellation Luminaries in Chemical Space. Molecular Informatics, 2020, 39, 2000061.	2.5	4
7	Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2752-2761.	3.6	330
8	Modelos de educación médica en escenarios clÃnicos. Investigación En Educación Médica, 2020, 9, 96-105.	0.2	1
9	Finding Constellations in Chemical Space Through Core Analysis. Frontiers in Chemistry, 2019, 7, 510.	3.6	31
10	A general approach for retrosynthetic molecular core analysis. Journal of Cheminformatics, 2019, 11, 61.	6.1	8
11	Reaching for the bright StARs in chemical space. Drug Discovery Today, 2019, 24, 2162-2169.	6.4	25
12	WIP1 Contributes to the Adaptation of Fanconi Anemia Cells to DNA Damage as Determined by the Regulatory Network of the Fanconi Anemia and Checkpoint Recovery Pathways. Frontiers in Genetics, 2019, 10, 411.	2.3	5
13	Exploration of Target Synergy in Cancer Treatment by Cell-Based Screening Assay and Network Propagation Analysis. Journal of Chemical Information and Modeling, 2019, 59, 3072-3079.	5.4	1
14	Conformal prediction of HDAC inhibitors. SAR and QSAR in Environmental Research, 2019, 30, 265-277.	2.2	13
15	DataWarrior: an evaluation of the open-source drug discovery tool. Expert Opinion on Drug Discovery, 2019, 14, 335-341.	5.0	67
16	Specialty choice determinants among Mexican medical students: a cross-sectional study. BMC Medical Education, 2019, 19, 420.	2.4	14
17	HitPickV2: a web server to predict targets of chemical compounds. Bioinformatics, 2019, 35, 1239-1240.	4.1	25
18	Systematic Extraction of Analogue Series from Large Compound Collections Using a New Computational Compound–Core Relationship Method. ACS Omega, 2019, 4, 1027-1032.	3.5	56

J JesÃ⁰s Naveja

#	Article	IF	CITATIONS
19	Insights from pharmacological similarity of epigenetic targets in epipolypharmacology. Drug Discovery Today, 2018, 23, 141-150.	6.4	35
20	Chemoinformatics: a perspective from an academic setting in Latin America. Molecular Diversity, 2018, 22, 247-258.	3.9	16
21	Chemical space, diversity and activity landscape analysis of estrogen receptor binders. RSC Advances, 2018, 8, 38229-38237.	3.6	15
22	Protein–Protein Interaction Modulators for Epigenetic Therapies. Advances in Protein Chemistry and Structural Biology, 2018, 110, 65-84.	2.3	26
23	Computational Methods for Epigenetic Drug Discovery: A Focus on Activity Landscape Modeling. Advances in Protein Chemistry and Structural Biology, 2018, 113, 65-83.	2.3	7
24	Cheminformatics Approaches to Study Drug Polypharmacology. Methods in Pharmacology and Toxicology, 2018, , 3-25.	0.2	2
25	Analysis of a large food chemical database: chemical space, diversity, and complexity. F1000Research, 2018, 7, 993.	1.6	22
26	Analysis of a large food chemical database: chemical space, diversity, and complexity. F1000Research, 2018, 7, 993.	1.6	43
27	Modeling response to oncological surgery. , 2018, , 259-282.		0
28	Factores relacionados con la elección de una especialidad en medicina. Investigación En Educación Médica, 2017, 6, 206-214.	0.2	5
29	Getting SMARt in drug discovery: chemoinformatics approaches for mining structure–multiple activity relationships. RSC Advances, 2017, 7, 632-641.	3.6	26
30	<i>In-Situ</i> Metallization of Thermally-Treated Tobacco Mosaic Virus Using Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2017, 17, 4740-4747.	0.9	6
31	Open chemoinformatic resources to explore the structure, properties and chemical space of molecules. RSC Advances, 2017, 7, 54153-54163.	3.6	45
32	ChemMaps: Towards an approach for visualizing the chemical space based on adaptive satellite compounds. F1000Research, 2017, 6, 1134.	1.6	16
33	ChemMaps: Towards an approach for visualizing the chemical space based on adaptive satellite compounds. F1000Research, 2017, 6, 1134.	1.6	25
34	Factores relacionados con la elección de una especialidad en médicos residentes mexicanos. Gaceta Medica De Mexico, 2017, 153, 800-809.	0.3	2
35	One Drug for Multiple Targets: A Computational Perspective. Journal of the Mexican Chemical Society, 2017, 60, .	0.6	10
36	Drug Repurposing for Epigenetic Targets Guided by Computational Methods. , 2016, , 327-357.		19

J JesÃ⁰s Naveja

#	Article	IF	CITATIONS
37	Chemoinformatic expedition of the chemical space of fungal products. Future Medicinal Chemistry, 2016, 8, 1399-1412.	2.3	42
38	Activity landscape analysis of novel 5\$\$upalpha \$\$-reductase inhibitors. Molecular Diversity, 2016, 20, 771-780.	3.9	10
39	Introduction of Epigenetic Targets in Drug Discovery and Current Status of Epi-Drugs and Epi-Probes. , 2016, , 1-20.		3
40	Activity landscape sweeping: insights into the mechanism of inhibition and optimization of DNMT1 inhibitors. RSC Advances, 2015, 5, 63882-63895.	3.6	23
41	Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery. Expert Opinion on Drug Discovery, 2015, 10, 1059-1070.	5.0	19
42	Computational Simulation of Tumor Surgical Resection Coupled with the Immune System Response to Neoplastic Cells. Journal of Computational Medicine, 2014, 2014, 1-5.	0.3	0