Ewa Åøjkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1744252/publications.pdf Version: 2024-02-01

		117625	144013
117	4,116	34	57
papers	citations	h-index	g-index
128	128	128	2854
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>Dickeya</i> species: an emerging problem for potato production in Europe. Plant Pathology, 2011, 60, 385-399.	2.4	383

 $_2$ Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum) Tj ETQq0 0 0 rgBT_Overlock 10 Tf 50

3	Detection, identification and differentiation of <i>Pectobacterium</i> and <i>Dickeya</i> species causing potato blackleg and tuber soft rot: a review. Annals of Applied Biology, 2015, 166, 18-38.	2.5	166
4	Fertile Interspecific Somatic Hybrids of <i>Solanum</i> : A Novel Source of Resistance to <i>Erwinia</i> Soft Rot. Phytopathology, 1988, 78, 1216.	2.2	133
5	Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology (United Kingdom), 2002, 148, 583-595.	1.8	123
6	Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Molecular Microbiology, 1995, 16, 1183-1195.	2.5	103
7	Genomic, Proteomic and Morphological Characterization of Two Novel Broad Host Lytic Bacteriophages ΦPD10.3 and ΦPD23.1 Infecting Pectinolytic Pectobacterium spp. and Dickeya spp PLoS ONE, 2015, 10, e0119812.	2.5	90
8	Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of Experimental Botany, 2018, 69, 1735-1748.	4.8	86
9	Isolation and characterization of novel soilborne lytic bacteriophages infecting <i>Dickeya</i> spp. biovar 3 (â€~ <i>D. solani</i> '). Plant Pathology, 2014, 63, 758-772.	2.4	85
10	Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicology and Applied Pharmacology, 2007, 223, 267-276.	2.8	83
11	A new clade of <i>Dickeya</i> spp. plays a major role in potato blackleg outbreaks in North Finland. Annals of Applied Biology, 2013, 162, 231-241.	2.5	81
12	Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme and Microbial Technology, 2003, 33, 565-568.	3.2	78
13	Application of chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in <i>Ruta graveolens</i> L. (common rue). Biotechnology and Applied Biochemistry, 2008, 51, 91-96.	3.1	72
14	Inactivation of AHLs by <i>Ochrobactrum</i> sp. A44 depends on the activity of a novel class of AHL acylase. Environmental Microbiology Reports, 2011, 3, 59-68.	2.4	65
15	Biodiversity of <i>Dickeya</i> spp. Isolated from Potato Plants and Water Sources in Temperate Climate. Plant Disease, 2016, 100, 408-417.	1.4	64
16	Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. In Vitro Cellular and Developmental Biology - Plant, 2012, 48, 555-564.	2.1	63
17	Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme and Microbial Technology, 2008, 42, 216-221.	3.2	60
18	Establishment of hairy root cultures of Ammi majus. Plant Science, 2001, 160, 259-264.	3.6	58

#	Article	IF	CITATIONS
19	First report of bacterial soft rot on potato caused by <i>Dickeya</i> sp. (syn. <i>Erwinia) Tj ETQq1 1 0.78431</i>	4 rgBT_/Over	lock_10 Tf 50
20	Induction of Apoptosis in HL-60 Cells through the ROS-Mediated Mitochondrial Pathway by Ramentaceone from <i>Drosera aliciae</i> . Journal of Natural Products, 2012, 75, 9-14.	3.0	56
21	Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Annals of Applied Biology, 2014, 165, 474-487.	2.5	56
22	Plumbagin Induces Apoptosis in Her2-Overexpressing Breast Cancer Cells through the Mitochondrial-Mediated Pathway. Journal of Natural Products, 2012, 75, 747-751.	3.0	51
23	Comparison of Highly and Weakly Virulent Dickeya solani Strains, With a View on the Pangenome and Panregulon of This Species. Frontiers in Microbiology, 2018, 9, 1940.	3.5	50
24	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation, and Functional Variability. Molecular Plant-Microbe Interactions, 2014, 27, 700-711.	2.6	49
25	Salicylic acid can reduce infection symptoms caused by Dickeya solani in tissue culture grown potato (Solanum tuberosum L.) plants. European Journal of Plant Pathology, 2015, 141, 545-558.	1.7	48
26	Complete genome sequence of a broad-host-range lytic Dickeya spp. bacteriophage ϕD5. Archives of Virology, 2014, 159, 3153-3155.	2.1	45
27	Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. New Biotechnology, 2017, 39, 181-189.	4.4	45
28	Secondary metabolites inin vitro cultured plants of the genusDrosera. Phytochemical Analysis, 2005, 16, 143-149.	2.4	43
29	Occurrence of Pectobacterium wasabiae in potato field samples. European Journal of Plant Pathology, 2013, 137, 149-158.	1.7	43
30	Characterization of Dickeya and Pectobacterium strains obtained from diseased potato plants in different climatic conditions of Norway and Poland. European Journal of Plant Pathology, 2017, 148, 839-851.	1.7	42
31	Characterization of Pectobacterium carotovorum subsp. odoriferum causing soft rot of stored vegetables. European Journal of Plant Pathology, 2014, 139, 457-469.	1.7	40
32	Genetic transformation of RutaÂgraveolens L. by AgrobacteriumÂrhizogenes: hairy root cultures a promising approach for production of coumarins and furanocoumarins. Plant Cell, Tissue and Organ Culture, 2009, 97, 59-69.	2.3	37
33	Antibacterial activity of caffeine against plant pathogenic bacteria. Acta Biochimica Polonica, 2015, 62, 605-612.	0.5	37
34	Temperatureâ€responsive genetic loci in pectinolytic plant pathogenic <i>Dickeya solani</i> . Plant Pathology, 2017, 66, 584-594.	2.4	37
35	Population Structure and Biodiversity of <i>Pectobacterium parmentieri</i> Isolated from Potato Fields in Temperate Climate. Plant Disease, 2018, 102, 154-164.	1.4	37
36	Application of rapd in the determination of genetic fidelity in micropropagated Drosera plantlets. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 592-595.	2.1	36

#	Article	IF	CITATIONS
37	First Report of <i>Pectobacterium carotovorum</i> subsp. <i>brasiliense</i> Causing Soft Rot on Potato and Other Vegetables in Poland. Plant Disease, 2015, 99, 1271-1271.	1.4	35
38	Establishment of a co-culture of Ammi majus L. and Ruta graveolens L. for the synthesis of furanocoumarins. Plant Science, 2003, 165, 1315-1319.	3.6	34
39	Application of RFLP analysis of recA, gyrA and rpoS gene fragments for rapid differentiation of Erwinia amylovora from Erwinia strains isolated in Korea and Japan. European Journal of Plant Pathology, 2008, 121, 161-172.	1.7	34
40	Antibacterial and antioxidant activity of the secondary metabolites from <i>in vitro</i> cultures of the Alice sundew (<i>Drosera aliciae</i>). Biotechnology and Applied Biochemistry, 2009, 53, 175-184.	3.1	34
41	Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana. BMC Plant Biology, 2014, 14, 280.	3.6	33
42	The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. European Journal of Plant Pathology, 2017, 147, 803-817.	1.7	33
43	Teratomas of Drosera capensis var. alba as a source of naphthoquinone: ramentaceone. Plant Cell, Tissue and Organ Culture, 2010, 103, 285-292.	2.3	32
44	Genetic diversity of Erwinia carotovora strains isolated from infected plants grown in Poland. EPPO Bulletin, 2000, 30, 403-407.	0.8	30
45	Interplay of classic Exp and specific Vfm quorum sensing systems on the phenotypic features of <i>Dickeya solani</i> strains exhibiting different virulence levels. Molecular Plant Pathology, 2018, 19, 1238-1251.	4.2	30
46	Use of GUS Fusion to Study the Expression ofErwinia chrysanthemiPectinase Genes During Infection of Potato Tubers. Molecular Plant-Microbe Interactions, 1993, 6, 488.	2.6	30
47	Antibacterial Activity of Fructose-Stabilized Silver Nanoparticles Produced by Direct Current Atmospheric Pressure Glow Discharge towards Quarantine Pests. Nanomaterials, 2018, 8, 751.	4.1	29
48	Enhanced production of antitumour naphthoquinones in transgenic hairy root lines of Lithospermum canescens. Plant Cell, Tissue and Organ Culture, 2012, 108, 213-219.	2.3	28
49	Plumbagin sensitizes breast cancer cells to tamoxifen-induced cell death through GRP78 inhibition and Bik upregulation. Scientific Reports, 2017, 7, 43781.	3.3	28
50	High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genomics, 2018, 19, 751.	2.8	28
51	Direct regeneration of Drosera from leaf explants and shoot tips. Plant Cell, Tissue and Organ Culture, 2003, 75, 175-178.	2.3	27
52	HPLC-DAD in identification and quantification of selected coumarins in crude extracts from plant cultures ofAmmi majus andRuta graveolens. Journal of Separation Science, 2003, 26, 1287-1291.	2.5	27
53	Chromatographic analysis of simple phenols in some species from the genus <i>Salix</i> . Phytochemical Analysis, 2010, 21, 463-469.	2.4	27
54	Plumbagin Increases Paclitaxel-Induced Cell Death and Overcomes Paclitaxel Resistance in Breast Cancer Cells through ERK-Mediated Apoptosis Induction. Journal of Natural Products, 2019, 82, 878-885.	3.0	27

#	Article	IF	CITATIONS
55	Resistance toErwinia spp. in diploid potato with a high starch content. Potato Research, 1993, 36, 177-182.	2.7	26
56	Diseases Caused by Pectobacterium and Dickeya Species Around the World. , 2021, , 215-261.		25
57	Comparison of the effectiveness of different methods of screening for bacterial soft rot resistance of potato tubers. American Potato Journal, 1994, 71, 99-113.	0.3	23
58	Induction of secondary metabolite production in transformed callus of Ammi majus L. grown after electromagnetic treatment of the culture medium. Enzyme and Microbial Technology, 2006, 39, 1386-1391.	3.2	23
59	Polymorphism analysis of housekeeping genes for identification and differentiation of Clavibacter michiganensis subspecies. European Journal of Plant Pathology, 2011, 131, 341-354.	1.7	22
60	Draft Genome Sequence of a Highly Virulent Strain of the Plant Pathogen Dickeya solani, IFB0099. Genome Announcements, 2015, 3, .	0.8	22
61	Genes responsible for coronatine synthesis in Pseudomonas syringae present in the genome of soft rot bacteria. European Journal of Plant Pathology, 2009, 124, 353-361.	1.7	21
62	Application of Silver Nanostructures Synthesized by Cold Atmospheric Pressure Plasma for Inactivation of Bacterial Phytopathogens from the Genera Dickeya and Pectobacterium. Materials, 2018, 11, 331.	2.9	21
63	Detection and identification of potentially toxic cyanobacteria in Polish water bodies Acta Biochimica Polonica, 2011, 58, .	0.5	21
64	Expression of Erwinia chrysanthemi Pectinase Genes pell, pelL, and pelZ During Infection of Potato Tubers. Molecular Plant-Microbe Interactions, 1999, 12, 845-851.	2.6	20
65	Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells. PLoS ONE, 2016, 11, e0147718.	2.5	20
66	Changes of the lipid catabolism in potato tubers from cultivars differing in susceptibility to autolysis during the storage. Potato Research, 1989, 32, 463-470.	2.7	19
67	Screening of seedlings of wildSolanum species for resistance to bacterial stem rot caused by soft rot Erwinias. American Potato Journal, 1989, 66, 379-390.	0.3	19
68	Antibacterial Activity of Synthetic Peptides Against Plant Pathogenic Pectobacterium Species. Journal of Phytopathology, 2005, 153, 313-317.	1.0	19
69	Identification of Ruta graveolens L. Metabolites Accumulated in the Presence of Abiotic Elicitors. Biotechnology Progress, 2008, 24, 128-133.	2.6	19
70	Genotypic and phenotypic variability of Pectobacterium strains causing blackleg and soft rot on potato in Turkey. European Journal of Plant Pathology, 2018, 152, 143-155.	1.7	19
71	In vitro cultures of Drosera aliciae as a source of a cytotoxic naphthoquinone: ramentaceone. Biotechnology Letters, 2011, 33, 2309-2316.	2.2	18
72	The structure of O-polysaccharides isolated from plant pathogenic bacteria Pectobacterium wasabiae IFB5408 and IFB5427. Carbohydrate Research, 2016, 426, 46-49.	2.3	18

#	Article	IF	CITATIONS
73	The Role of Polyphenol Oxidase and Peroxidase in Potato Tuber Resistance to Soft Rot Caused by <i>Erwinia carotovora</i> . Journal of Phytopathology, 1992, 136, 319-328.	1.0	17
74	Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes. Annals of Applied Biology, 2013, 163, 378-393.	2.5	17
75	The occurrence of bacteria from different species of Pectobacteriaceae on seed potato plantations in Poland. European Journal of Plant Pathology, 2021, 159, 309-325.	1.7	17
76	The complete genome, structural proteome, comparative genomics and phylogenetic analysis of a broad host lytic bacteriophage I•D3 infecting pectinolytic Dickeya spp Standards in Genomic Sciences, 2015, 10, 68.	1.5	16
77	Comparative genomics and pangenome-oriented studies reveal high homogeneity of the agronomically relevant enterobacterial plant pathogen Dickeya solani. BMC Genomics, 2020, 21, 449.	2.8	16
78	Rapid eradication of bacterial phytopathogens by atmospheric pressure glow discharge generated in contact with a flowing liquid cathode. Biotechnology and Bioengineering, 2018, 115, 1581-1593.	3.3	15
79	Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage Acta Biochimica Polonica, 2012, 59, .	0.5	15
80	Chemical structure of the O-polysaccharide isolated from Pectobacterium atrosepticum SCRI 1039. Carbohydrate Research, 2011, 346, 2978-2981.	2.3	14
81	The uniform structure of O-polysaccharides isolated from Dickeya solani strains of different origin. Carbohydrate Research, 2017, 445, 40-43.	2.3	14
82	Genotypic characterisation of the Erwinia genus by PCR-RFLP analysis of rpoS gene. Plant Protection Science, 2002, 38, 288-290.	1.4	14
83	3-Chloroplumbagin Induces Cell Death in Breast Cancer Cells Through MAPK-Mediated Mcl-1 Inhibition. Frontiers in Pharmacology, 2019, 10, 784.	3.5	14
84	Effective biotic elicitation of Ruta graveolens L. shoot cultures by lysates from Pectobacterium atrosepticum and Bacillus sp Biotechnology Letters, 2008, 30, 541-545.	2.2	13
85	Molecular Interactions of Pectobacterium and Dickeya with Plants. , 2021, , 85-147.		12
86	Production ofErwinia chrysanthemi pectinases in potato tubers showing high or low level of resistance to soft-rot. European Journal of Plant Pathology, 1996, 102, 511-517.	1.7	11
87	Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts. Folia Microbiologica, 2016, 61, 29-33.	2.3	11
88	Isolation and identification of cytotoxic compounds from the rhizomes of Paris quadrifolia L Pharmacognosy Magazine, 2014, 10, 324.	0.6	10
89	Metabolic Modeling of Pectobacterium parmentieri SCC3193 Provides Insights into Metabolic Pathways of Plant Pathogenic Bacteria. Microorganisms, 2019, 7, 101.	3.6	10
90	Interplay between Coumarin Accumulation, Iron Deficiency and Plant Resistance to Dickeya spp International Journal of Molecular Sciences, 2021, 22, 6449.	4.1	10

#	Article	IF	CITATIONS
91	Identification and Quantification of Coumarins by UHPLC-MS in Arabidopsis thaliana Natural Populations. Molecules, 2021, 26, 1804.	3.8	9
92	Implementation of a Non-Thermal Atmospheric Pressure Plasma for Eradication of Plant Pathogens from a Surface of Economically Important Seeds. International Journal of Molecular Sciences, 2021, 22, 9256.	4.1	9
93	Effect of <i>Dionaea muscipula</i> extract and plumbagin on maceration of potato tissue by <i>Pectobacterium atrosepticum</i> . Annals of Applied Biology, 2014, 164, 404-414.	2.5	8
94	A review on Dickeya solani , a new pathogenic bacterium causing loss in potato yield in Europe. Biotechnologia, 2016, 2, 109-127.	0.9	8
95	The structure of the O-polysaccharide isolated from pectinolytic gram-negative bacterium Dickeya aquatica IFB0154 is different from the O-polysaccharides of other Dickeya species. Carbohydrate Research, 2020, 497, 108135.	2.3	7
96	Heterogenicity within the LPS Structure in Relation to the Chosen Genomic and Physiological Features of the Plant Pathogen Pectobacterium parmentieri. International Journal of Molecular Sciences, 2022, 23, 2077.	4.1	7
97	Lipid composition and post-wounding degradation in potato slices from cultivars differing in susceptibility to autolysis. Potato Research, 1988, 31, 541-549.	2.7	6
98	The First Polish Isolate of a Novel Species Pectobacterium aquaticum Originates from a Pomeranian Lake. International Journal of Environmental Research and Public Health, 2021, 18, 5041.	2.6	6
99	IDENTIFICATION OF SECONDARY METABOLITES IN IN VITRO CULTURE OF AMMI MAJUS TREATED WITH ELICITORS. Acta Horticulturae, 2001, , 255-258.	0.2	6
100	Effects of stressful physico-chemical factors on the fitness of the plant pathogenic bacterium Dickeya solani. European Journal of Plant Pathology, 2020, 156, 519-535.	1.7	5
101	Isolation, Detection and Characterization of Pectobacterium and Dickeya Species. , 2021, , 149-173.		5
102	Asymbiotic germination, seedling development and plantlet propagation of Encyclia aff. oncidioides - an endangered orchid. Acta Societatis Botanicorum Poloniae, 2011, 74, 193-198.	0.8	5
103	The effect of wound healing and of certain chemicals on electrolyte release from discs of potato by enzymes ofErwinia carotovora. Potato Research, 1984, 27, 131-143.	2.7	4
104	Rapid detection of mutagens accumulated in plant tissues using a novel Vibrio harveyi mutagenicity assay. Ecotoxicology and Environmental Safety, 2008, 70, 231-235.	6.0	4
105	Genome-Wide Analyses of the Temperature-Responsive Genetic Loci of the Pectinolytic Plant Pathogenic Pectobacterium atrosepticum. International Journal of Molecular Sciences, 2021, 22, 4839.	4.1	4
106	Simplex Optimized LC Analysis of Plant Coumarins and Furanocoumarins. Chromatographia, 2008, 67, 653-657.	1.3	3
107	Application of pulse-modulated radio-frequency atmospheric pressure glow discharge for degradation of doxycycline from a flowing liquid solution. Scientific Reports, 2022, 12, 7354.	3.3	3
108	The metabolic shift in highly and weakly virulent Dickeya solani strains is more affected by temperature than by mutations in genes encoding global virulence regulators. FEMS Microbiology Ecology, 2020, 96, .	2.7	2

#	Article	IF	CITATIONS
109	Post-wounding changes in the oxygen consumption by slices from tubers of several potato cultivars. Potato Research, 1988, 31, 550-556.	2.7	1
110	Cytotoxic Activity of Paris quadrifolia Extract and Isolated Saponin Fractions Against Human Tumor Cell Lines. Acta Biologica Cracoviensia Series Botanica, 2011, 53, .	0.5	1
111	WacÅ,aw Szybalski: Lwów, GdaÅ"sk, Madison — Life of scientist and philanthropist. Gene, 2013, 525, 155-157.	2.2	1
112	PacBio-Based Protocol for Bacterial Genome Assembly. Methods in Molecular Biology, 2021, 2242, 3-14.	0.9	1
113	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation and Functional Variability. Molecular Plant-Microbe Interactions, 2015, 2015, 5-16.	2.6	1
114	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation and Functional Variability. Molecular Plant-Microbe Interactions, 2015, 2015, 57-68.	2.6	1
115	Identification of a DNA restriction-modification system in Pectobacterium carotovorum strains isolated from Poland. Journal of Applied Microbiology, 2006, 100, 343-351.	3.1	0
116	Comparative Genomics, from the Annotated Genome to Valuable Biological Information: A Case Study. Methods in Molecular Biology, 2021, 2242, 91-112.	0.9	0
117	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation and Functional Variability. Molecular Plant-Microbe Interactions, 0, , MPMI-99-99-0004.	2.6	0