List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1743858/publications.pdf Version: 2024-02-01

		147726	175177
111	3,444	31	52
papers	citations	h-index	g-index
127	127	127	5698
all docs	docs citations	times ranked	citing authors

LAITH YAKOR

#	Article	IF	CITATIONS
1	Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.	1.9	378
2	Co-distribution and co-infection of chikungunya and dengue viruses. BMC Infectious Diseases, 2016, 16, 84.	1.3	171
3	Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infectious Diseases, 2015, 15, 516.	1.3	159
4	Zika virus outbreak in the Americas: the need for novel mosquito control methods. The Lancet Global Health, 2016, 4, e148-e149.	2.9	144
5	Comorbidities, Exposure to Medications, and the Risk of Community-Acquired <i>Clostridium difficile</i> Infection: A Systematic Review and Meta-analysis. Infection Control and Hospital Epidemiology, 2015, 36, 132-141.	1.0	123
6	A Mathematical Model of Chikungunya Dynamics and Control: The Major Epidemic on Réunion Island. PLoS ONE, 2013, 8, e57448.	1.1	107
7	<i>Aedes aegypti</i> control: the concomitant role of competition, space and transgenic technologies. Journal of Applied Ecology, 2008, 45, 1258-1265.	1.9	75
8	Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus. PLoS Neglected Tropical Diseases, 2016, 10, e0005173.	1.3	70
9	The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—A systematic review. PLoS Neglected Tropical Diseases, 2021, 15, e0009631.	1.3	70
10	The role of sponge competition on coral reef alternative steady states. Ecological Modelling, 2011, 222, 1847-1853.	1.2	69
11	Heterogeneous and Dynamic Prevalence of Asymptomatic Influenza Virus Infections. Emerging Infectious Diseases, 2016, 22, 1052-1056.	2.0	63
12	Land Use and Land Cover Changes and Spatiotemporal Dynamics of Anopheline Larval Habitats during a Four-Year Period in a Highland Community of Africa. American Journal of Tropical Medicine and Hygiene, 2009, 81, 1079-1084.	0.6	61
13	Variation in natural exposure to anopheles mosquitoes and its effects on malaria transmission. ELife, 2018, 7, .	2.8	60
14	Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms. Journal of the Royal Society Interface, 2011, 8, 799-806.	1.5	59
15	Gut microbiota disturbance during helminth infection: can it affect cognition and behaviour of children?. BMC Infectious Diseases, 2017, 17, 58.	1.3	56
16	Low risk of a sexually-transmitted Zika virus outbreak. Lancet Infectious Diseases, The, 2016, 16, 1100-1102.	4.6	55
17	Chikungunya virus in Asia – Pacific: a systematic review. Emerging Microbes and Infections, 2019, 8, 70-79.	3.0	55
18	Reciprocal facilitation and nonâ€linearity maintain habitat engineering on coral reefs. Oikos, 2013, 122, 428-440.	1.2	54

Laith Υάκοβ

#	Article	IF	CITATIONS
19	Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Medicine, 2018, 16, 180.	2.3	53
20	Climate change induces demographic resistance to disease in novel coral assemblages. Proceedings of the United States of America, 2011, 108, 1967-1969.	3.3	52
21	Upper Versus Lower Gastrointestinal Delivery for Transplantation of Fecal Microbiota in Recurrent or Refractory Clostridium difficile Infection. Journal of Clinical Gastroenterology, 2017, 51, 145-150.	1.1	52
22	Identification of the first pyrimidine nucleobase transporter in Leishmania: similarities with the Trypanosoma brucei U1 transporter and antileishmanial activity of uracil analogues. Parasitology, 2005, 130, 275-283.	0.7	42
23	Spatiotemporal patterns and climatic drivers of severe dengue in Thailand. Science of the Total Environment, 2019, 656, 889-901.	3.9	41
24	Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malaria Journal, 2009, 8, 234.	0.8	38
25	Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Scientific Reports, 2015, 5, 12666.	1.6	38
26	Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study. BMC Medicine, 2019, 17, 172.	2.3	38
27	Modeling the Effects of Integrating Larval Habitat Source Reduction and Insecticide Treated Nets for Malaria Control. PLoS ONE, 2009, 4, e6921.	1.1	37
28	Clostridium difficile Infection Seasonality: Patterns across Hemispheres and Continents – A Systematic Review. PLoS ONE, 2015, 10, e0120730.	1.1	37
29	Quantifying Leishmania Metacyclic Promastigotes from Individual Sandfly Bites Reveals the Efficiency of Vector Transmission. Communications Biology, 2019, 2, 84.	2.0	37
30	Mathematical modelling for antibiotic resistance control policy: do we know enough?. BMC Infectious Diseases, 2019, 19, 1011.	1.3	37
31	Clostridium difficile exposure as an insidious source of infection in healthcare settings: an epidemiological model. BMC Infectious Diseases, 2013, 13, 376.	1.3	35
32	The Driving Force for 2014 Dengue Outbreak in Guangdong, China. PLoS ONE, 2016, 11, e0166211.	1.1	35
33	Hemorrhagic fever with renal syndrome in China: Mechanisms on two distinct annual peaks and control measures. International Journal of Biomathematics, 2018, 11, 1850030.	1.5	35
34	Vector competence, vectorial capacity of Nyssorhynchus darlingi and the basic reproduction number of Plasmodium vivax in agricultural settlements in the Amazonian Region of Brazil. Malaria Journal, 2019, 18, 117.	0.8	35
35	Geographical distribution of human Schistosoma japonicum infection in The Philippines: tools to support disease control and further elimination. International Journal for Parasitology, 2014, 44, 977-984.	1.3	34
36	Mapping the Risk of Soil-Transmitted Helminthic Infections in the Philippines. PLoS Neglected Tropical Diseases, 2015, 9, e0003915.	1.3	33

#	Article	IF	CITATIONS
37	Projecting the future of dengue under climate change scenarios: Progress, uncertainties and research needs. PLoS Neglected Tropical Diseases, 2020, 14, e0008118.	1.3	33
38	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. PLoS Neglected Tropical Diseases, 2020, 14, e0007997.	1.3	31
39	Aedes aegypti Control Through Modernized, Integrated Vector Management. PLOS Currents, 2017, 9, .	1.4	31
40	Modelling knowlesi malaria transmission in humans: vector preference and host competence. Malaria Journal, 2010, 9, 329.	0.8	30
41	Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Scientific Reports, 2019, 9, 3262.	1.6	30
42	Using Mathematical Transmission Modelling to Investigate Drivers of Respiratory Syncytial Virus Seasonality in Children in the Philippines. PLoS ONE, 2014, 9, e90094.	1.1	28
43	Synthesising 30 Years of Mathematical Modelling of Echinococcus Transmission. PLoS Neglected Tropical Diseases, 2013, 7, e2386.	1.3	26
44	Endectocide-treated cattle for malaria control: A coupled entomological-epidemiological model. Parasite Epidemiology and Control, 2016, 1, 2-9.	0.6	26
45	Risk factors for acquisition of multidrug-resistant Enterobacterales among international travellers: a synthesis of cumulative evidence. Journal of Travel Medicine, 2020, 27, .	1.4	26
46	The cost-effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: a modelling study. BMC Medicine, 2020, 18, 186.	2.3	24
47	Assessing control bundles for <i>Clostridium difficile</i> : a review and mathematical model. Emerging Microbes and Infections, 2014, 3, 1-8.	3.0	23
48	Measuring the Effect of Soil-Transmitted Helminth Infections on Cognitive Function in Children. Advances in Parasitology, 2017, 98, 1-37.	1.4	22
49	A population-based spatio-temporal analysis of Clostridium difficile infection in Queensland, Australia over a 10-year period. Journal of Infection, 2014, 69, 447-455.	1.7	21
50	Temperature modulates immune gene expression in mosquitoes during arbovirus infection. Open Biology, 2021, 11, 200246.	1.5	21
51	Importance of Space and Competition in Optimizing Genetic Control Strategies. Journal of Economic Entomology, 2009, 102, 50-57.	0.8	20
52	Treatment of pigs with endectocides as a complementary tool for combating malaria transmission by Anopheles farauti (s.s.) in Papua New Guinea. Parasites and Vectors, 2019, 12, 124.	1.0	20
53	Asymptomatic Clostridium difficile colonization in two Australian tertiary hospitals, 2012–2014: prospective, repeated cross-sectional study. Clinical Microbiology and Infection, 2017, 23, 48.e1-48.e7.	2.8	19
54	Extreme weather events and dengue outbreaks in Guangzhou, China: a time-series quasi-binomial distributed lag non-linear model. International Journal of Biometeorology, 2021, 65, 1033-1042.	1.3	19

#	Article	IF	CITATIONS
55	Transgenic Control of Vectors: The Effects of Interspecific Interactions. Israel Journal of Ecology and Evolution, 2010, 56, 353-370.	0.2	18
56	Plasmodium knowlesi invasion following spread by infected mosquitoes, macaques and humans. Parasitology, 2018, 145, 101-110.	0.7	17
57	Chikungunya Virus Transmission at Low Temperature by Aedes albopictus Mosquitoes. Pathogens, 2019, 8, 149.	1.2	17
58	A network population model of the dynamics and control of African malaria vectors. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104, 669-675.	0.7	16
59	How do biting disease vectors behaviourally respond to host availability?. Parasites and Vectors, 2016, 9, 468.	1.0	16
60	Investigating the blood-host plasticity and dispersal of Anopheles coluzzii using a novel field-based methodology. Parasites and Vectors, 2019, 12, 143.	1.0	16
61	25â€Hydroxyvitamin D Concentrations and <i>Clostridium difficile</i> Infection: A Metaâ€Analysis. Journal of Parenteral and Enteral Nutrition, 2017, 41, 890-895.	1.3	15
62	Using the human blood index to investigate host biting plasticity: a systematic review and meta-regression of the three major African malaria vectors. Malaria Journal, 2018, 17, 479.	0.8	15
63	A regional suitable conditions index to forecast the impact of climate change on dengue vectorial capacity. Environmental Research, 2021, 195, 110849.	3.7	15
64	Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability. Environmental Research, 2021, 196, 110900.	3.7	15
65	Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets. Malaria Journal, 2017, 16, 114.	0.8	14
66	Spatial distribution and populations at risk of A. lumbricoides and T. trichiura co-infections and infection intensity classes: an ecological study. Parasites and Vectors, 2018, 11, 535.	1.0	14
67	Using dengue epidemics and local weather in Bali, Indonesia to predict imported dengue in Australia. Environmental Research, 2019, 175, 213-220.	3.7	14
68	Slaving and release in co-infection control. Parasites and Vectors, 2013, 6, 157.	1.0	13
69	ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas. Global Health Action, 2019, 12, 1666566.	0.7	13
70	Evidence of extrinsic factors dominating intrinsic blood host preferences of major African malaria vectors. Scientific Reports, 2020, 10, 741.	1.6	13
71	A network approach to modeling population aggregation and genetic control of pest insects. Theoretical Population Biology, 2008, 74, 324-331.	0.5	12
72	Dynamic spatiotemporal trends of imported dengue fever in Australia. Scientific Reports, 2016, 6, 30360.	1.6	12

#	Article	IF	CITATIONS
73	El Niño Southern Oscillation, overseas arrivals and imported chikungunya cases in Australia: A time series analysis. PLoS Neglected Tropical Diseases, 2019, 13, e0007376.	1.3	12
74	Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis. PLoS Biology, 2021, 19, e3000796.	2.6	12
75	Modelling parasite aggregation: disentangling statistical and ecological approaches. International Journal for Parasitology, 2014, 44, 339-342.	1.3	10
76	Reducing length of stay to improve Clostridium difficile -related health outcomes. Infection, Disease and Health, 2018, 23, 87-92.	0.5	9
77	Temporal and spatial stability of Anopheles gambiae larval habitat distribution in Western Kenya highlands. International Journal of Health Geographics, 2009, 8, 70.	1.2	7
78	Analysing the generality of spatially predictive mosquito habitat models. Acta Tropica, 2011, 119, 30-37.	0.9	7
79	High relative humidity might trigger the occurrence of the second seasonal peak of dengue in the Philippines. Science of the Total Environment, 2020, 708, 134849.	3.9	7
80	Zika Virus after the Public Health Emergency of International Concern Period, Brazil. Emerging Infectious Diseases, 2022, 28, 837-840.	2.0	7
81	Community-AcquiredClostridium difficileInfection, Queensland, Australia. Emerging Infectious Diseases, 2016, 22, 1659-1661.	2.0	6
82	Economic evaluation of interventions designed to reduce Clostridium difficile infection. PLoS ONE, 2018, 13, e0190093.	1.1	6
83	Optimising systemic insecticide use to improve malaria control. BMJ Global Health, 2019, 4, e001776.	2.0	6
84	Epidemiological consequences of a newly discovered cryptic subgroup of Anopheles gambiae. Biology Letters, 2011, 7, 947-949.	1.0	5
85	Filling the gaps in global antimicrobial resistance research/surveillance. BMC Infectious Diseases, 2020, 20, 39.	1.3	5
86	Mathematical modelling to assess the feasibility of Wolbachia in malaria vector biocontrol. Journal of Theoretical Biology, 2022, 542, 111110.	0.8	5
87	A populational-based birth cohort study in a low-income urban area in Rio de Janeiro, Brazil: implementation and description of the characteristics of the study. Cadernos De Saude Publica, 2019, 35, e00023918.	0.4	4
88	Determinants of Spatial Heterogeneity of Functional Illiteracy among School-Aged Children in the Philippines: An Ecological Study. International Journal of Environmental Research and Public Health, 2019, 16, 137.	1.2	4
89	Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chemical Science, 2020, 11, 10973-10983.	3.7	4
90	Does Bangkok have a central role in the dengue dynamics of Thailand?. Parasites and Vectors, 2020, 13, 22.	1.0	4

#	Article	IF	CITATIONS
91	Detection of Cell-Fusing Agent virus across ecologically diverse populations of Aedes aegypti on the Caribbean island of Saint Lucia. Wellcome Open Research, 2020, 5, 149.	0.9	4
92	Synergies in integrated malaria control. Lancet Infectious Diseases, The, 2013, 13, 112.	4.6	3
93	Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed – Authors' reply. The Lancet Global Health, 2016, 4, e365-e366.	2.9	3
94	Heterogeneous and Dynamic Prevalence of Asymptomatic Influenza Virus Infections. Emerging Infectious Diseases, 2018, 24, 951-951.	2.0	3
95	Functional illiteracy burden in soil-transmitted helminth (STH) endemic regions of the Philippines: An ecological study and geographical prediction for 2017. PLoS Neglected Tropical Diseases, 2019, 13, e0007494.	1.3	3
96	Domestic risk factors for increased rodent abundance in a Lassa fever endemic region of rural Upper Guinea. Scientific Reports, 2021, 11, 20698.	1.6	3
97	Isolation thresholds for curbing SARS-CoV-2 resurgence. Epidemiology and Infection, 2021, 149, e168.	1.0	1
98	Systematic review : Yellow fever control through environmental management mechanisms. Tropical Medicine and International Health, 2021, 26, 1411-1418.	1.0	1
99	The importance of saturating density dependence for population-level predictions of SARS-CoV-2 resurgence compared with density-independent or linearly density-dependent models, England, 23 March to 31 July 2020. Eurosurveillance, 2021, 26, .	3.9	1
100	β-Lactam–Resistant <i>Streptococcus pneumoniae</i> Dynamics Following Treatment: A Dose-Response Meta-analysis. Clinical Infectious Diseases, 2022, 75, 1962-1970.	2.9	1
101	Reply to Jordan-Garza et al.: Demographic dynamism as an additional mechanism of coral disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E112-E112.	3.3	0
102	LIFE HISTORIES OFFER A CLUE TO THE FUTURE OF INFECTIOUS DISEASE ON CORAL REEFS. ANZIAM Journal, 2012, 54, 64-73.	0.3	0
103	Detection of a novel insect-specific flavivirus across ecologically diverse populations of Aedes aegypti on the Caribbean island of Saint Lucia. Wellcome Open Research, 2020, 5, 149.	0.9	Ο
104	Title is missing!. , 2020, 14, e0008118.		0
105	Title is missing!. , 2020, 14, e0008118.		Ο
106	Title is missing!. , 2020, 14, e0008118.		0
107	Title is missing!. , 2020, 14, e0008118.		0
108	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14, e0007997.		0

#	Article	IF	CITATIONS
109	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14, e0007997.		0
110	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14, e0007997.		0
111	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14, e0007997.		0