Paola DurÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1743486/publications.pdf Version: 2024-02-01

ΡλΟΙΑ ΠΗΡΑ:Ν

#	Article	IF	CITATIONS
1	Assessment of the combined effects of beef cattle manure and lemon peel waste on soil-plant biochemical properties and phosphorus uptake by ryegrass. Applied Soil Ecology, 2022, 169, 104217.	4.3	4
2	Boron and Zinc Diminish Grey Necrosis Incidence by the Promotion of Desirable Microorganisms on Hazelnut Orchards. Agronomy, 2022, 12, 868.	3.0	3
3	Effect of Poultry Manure Compost and Arbuscular Mycorrhizal Fungi on Cu Immobilization and Soil Microbial Communities in a Cu-Contaminated Soil Using the Metallophyte Oenothera Picensis. Journal of Soil Science and Plant Nutrition, 2021, 21, 1957-1967.	3.4	3
4	Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics, 2021, 10, 783.	3.7	43
5	Engineering Multigenerational Host-Modulated Microbiota against Soilborne Pathogens in Response to Global Climate Change. Biology, 2021, 10, 865.	2.8	9
6	Efficient Biocontrol of Gaeumannomyces graminis var. Tritici in Wheat: Using Bacteria Isolated from Suppressive Soils. Agronomy, 2021, 11, 2008.	3.0	3
7	Biological Crusts to Increase Soil Carbon Sequestration: New Challenges in a New Environment. Biology, 2021, 10, 1190.	2.8	8
8	Pesticide dissipation capacity of an organic biomixture used in the agriculture exposed to copper oxychloride. Ecotoxicology and Environmental Safety, 2020, 190, 110121.	6.0	2
9	Antifungal Effects of Drimane Sesquiterpenoids Isolated from <i>Drimys winteri</i> against Gaeumannomyces graminis var. tritici. Applied and Environmental Microbiology, 2020, 86, .	3.1	13
10	From farm to fork: it could be the case of Lactic Acid Bacteria in the stimulation of folates biofortification in food crops. Current Opinion in Food Science, 2020, 34, 1-8.	8.0	9
11	Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants. Frontiers in Microbiology, 2020, 11, 1036.	3.5	34
12	Natural Holobiome Engineering by Using Native Extreme Microbiome to Counteract the Climate Change Effects. Frontiers in Bioengineering and Biotechnology, 2020, 8, 568.	4.1	51
13	CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort. Earth System Science Data, 2020, 12, 457-468.	9.9	16
14	First report of fungal complex causing grey necrosis of hazelnut in Chile. New Disease Reports, 2020, 42, 7-7.	0.8	10
15	Occurrence of Soil Fungi in Antarctic Pristine Environments. Frontiers in Bioengineering and Biotechnology, 2019, 7, 28.	4.1	45
16	Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability. Soil Biology and Biochemistry, 2019, 136, 107516.	8.8	26
17	Fertilizer P Uptake Determined by Soil P Fractionation and Phosphatase Activity. Journal of Soil Science and Plant Nutrition, 2019, 19, 166-174.	3.4	28
18	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	3.7	145

Paola DurÃin

#	Article	IF	CITATIONS
19	Early responses to manganese (Mn) excess and its relation to antioxidant performance and organic acid exudation in barley cultivars. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	2
20	Endophytic selenobacteria and arbuscular mycorrhizal fungus for Selenium biofortification and Gaeumannomyces graminis biocontrol. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	10
21	Microbial Community Composition in Take-All Suppressive Soils. Frontiers in Microbiology, 2018, 9, 2198.	3.5	46
22	Understanding the Strategies to Overcome Phosphorus–Deficiency and Aluminum–Toxicity by Ryegrass Endophytic and Rhizosphere Phosphobacteria. Frontiers in Microbiology, 2018, 9, 1155.	3.5	21
23	Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure. Applied Soil Ecology, 2017, 115, 19-26.	4.3	67
24	Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities. Frontiers in Microbiology, 2017, 8, 1552.	3.5	41
25	Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	25
26	Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	40
27	Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper polluted soil using Oenothera picensis. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	10
28	Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biology and Fertility of Soils, 2016, 52, 763-773.	4.3	54
29	Improving selenium status in plant nutrition and quality. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	3.4	21
30	Endophytic selenobacteria as new inocula for selenium biofortification. Applied Soil Ecology, 2015, 96, 319-326.	4.3	39
31	Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biology and Fertility of Soils, 2014, 50, 983-990.	4.3	104
32	Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. Journal of Cereal Science, 2013, 57, 275-280.	3.7	102
33	Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 2012, 113, 106-111.	3.2	65
34	Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). Journal of Geochemical Exploration, 2012, 113, 100-105.	3.2	60
35	Soil and plant contamination by lead mining in Bellmunt (Western Mediterranean Area). Journal of Geochemical Exploration, 2012, 113, 94-99.	3.2	28
36	Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. Journal of Geochemical Exploration, 2012, 123, 109-113.	3.2	62

#	Article	IF	CITATIONS
37	Characterization, In Vitro Culture, and Molecular Analysis of Thecaphora solani, the Causal Agent of Potato Smut. Phytopathology, 2004, 94, 875-882.	2.2	25