
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1743394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biobased Resin for Sustainable Stereolithography: 3D Printed Vegetable Oil Acrylate Reinforced with Ultra-Low Content of Nanocellulose for Fossil Resin Substitution. 3D Printing and Additive Manufacturing, 2023, 10, 1272-1286.	1.4	7
2	Understanding the Impact of Microcrystalline Cellulose Modification on Durability and Biodegradation of Highly Loaded Biocomposites for Woody Like Materials Applications. Journal of Polymers and the Environment, 2022, 30, 1435-1450.	2.4	7
3	Hydrothermal Ageing Effect on Reinforcement Efficiency of Nanofibrillated Cellulose/Biobased Poly(butylene succinate) Composites. Polymers, 2022, 14, 221.	2.0	12
4	Clean Manufacturing of Cellulose Nanopapers by Incorporating Lignin and Xylan as Sustainable Additives. Carbohydrate Polymer Technologies and Applications, 2022, , 100207.	1.6	1
5	Acrylation of biomass: A review of synthesis process: Know-how and future application directions. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100626.	3.2	10
6	Bioâ€Inspired Macromolecular Ordering of Elastomers for Enhanced Contact Electrification and Triboelectric Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	3.0	7
7	Effects of ionic liquids and dual curing on vat photopolymerization process and properties of 3d-printed ionogels. Additive Manufacturing, 2022, 56, 102895.	1.7	2
8	Sustainable Wax Coatings Made from Pine Needle Extraction Waste for Nanopaper Hydrophobization. Membranes, 2022, 12, 537.	1.4	5
9	Simultaneous wettability and stiffness control of UV-curing vegetable oil resin composites by lignocellulosic components. Polymer, 2022, 255, 125154.	1.8	8
10	Spent coffee waste as a renewable source for the production of sustainable poly(butylene succinate) biocomposites from a circular economy perspective. RSC Advances, 2021, 11, 18580-18589.	1.7	25
11	Polytetrafluoroethylene Films in Rigid Polyurethane Foams' Dielectric Permittivity Measurements with a One-Side Access Capacitive Sensor. Polymers, 2021, 13, 1173.	2.0	7
12	UV-Light Curing of 3D Printing Inks from Vegetable Oils for Stereolithography. Polymers, 2021, 13, 1195.	2.0	33
13	Cellulose Nanocrystals vs. Cellulose Nanofibers: A Comparative Study of Reinforcing Effects in UV-Cured Vegetable Oil Nanocomposites. Nanomaterials, 2021, 11, 1791.	1.9	14
14	Water absorption and hydrothermal ageing of epoxy adhesives reinforced with amino-functionalized graphene oxide nanoparticles. Polymer Degradation and Stability, 2021, 191, 109670.	2.7	28
15	Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process. Industrial Crops and Products, 2021, 169, 113669.	2.5	57
16	Recovery processes of sustainable energy using different biomass and wastes. Renewable and Sustainable Energy Reviews, 2021, 150, 111483.	8.2	93
17	From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams. Industrial Crops and Products, 2021, 170, 113780.	2.5	85
18	Durability of Biodegradable Polymer Nanocomposites. Polymers, 2021, 13, 3375.	2.0	28

#	Article	IF	CITATIONS
19	Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. European Polymer Journal, 2021, 161, 110855.	2.6	77
20	Lignin and Xylan as Interface Engineering Additives for Improved Environmental Durability of Sustainable Cellulose Nanopapers. International Journal of Molecular Sciences, 2021, 22, 12939.	1.8	18
21	Phase transformation from rutile to anatase with oxygen ion dose in the TiO2 layer formed on a Ti substrate. Materials Science in Semiconductor Processing, 2020, 106, 104776.	1.9	15
22	Highly Loaded Cellulose/Poly (butylene succinate) Sustainable Composites for Woody-Like Advanced Materials Application. Molecules, 2020, 25, 121.	1.7	34
23	Synergy effects in dielectric and thermal properties of layered ethylene vinyl acetate composites with carbon and Fe 3 O 4 nanoparticles. Journal of Applied Polymer Science, 2020, 137, 48814.	1.3	7
24	Poly(butylene succinate) and graphene nanoplatelet–based sustainable functional nanocomposite materials: structure-properties relationship. Materials Today Chemistry, 2020, 18, 100351.	1.7	35
25	Biorefinery Approach for Aerogels. Polymers, 2020, 12, 2779.	2.0	31
26	Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 2020, 181, 109347.	2.7	42
27	On the Heuristic Procedure to Determine Processing Parameters in Additive Manufacturing Based on Materials Extrusion. Polymers, 2020, 12, 3009.	2.0	9
28	Sustainable tetra pak recycled cellulose / Poly(Butylene succinate) based woody-like composites for a circular economy. Journal of Cleaner Production, 2020, 270, 122321.	4.6	69
29	Needle-free electrospinning of nanofibrillated cellulose and graphene nanoplatelets based sustainable poly (butylene succinate) nanofibers. Materials Today Chemistry, 2020, 17, 100301.	1.7	38
30	Bio-Based Poly(butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose-Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studies. Polymers, 2020, 12, 1472.	2.0	55
31	Dielectric Permittivity of Rigid Rapeseed Oil Polyol Polyurethane Biofoams and Petrochemical Foams at Low Frequencies. Journal of Renewable Materials, 2020, 8, 1151-1170.	1.1	8
32	Synergistic Effect of Halloyosite Nanotube and Nanocellulose on Thermal and Mechanical Properties of Poly (Ethylmethacrylate-co-Acrylonitrile) Bionanocomposites. Journal of Renewable Materials, 2020, 8, 301-317.	1.1	5
33	Synthesis of Photoactive Compounds from Tall Oil Fatty Acids. Journal of Renewable Materials, 2020, 8, 1077-1089.	1.1	1
34	Thermal properties of polylactide / recycled lignin and cellulose filler biocomposites. IOP Conference Series: Materials Science and Engineering, 2019, 500, 012031.	0.3	2
35	Dielectric Properties of Ethylene Vinyl Acetate Copolymer Composites Filled with Carbon Nanotubes, Graphene Nanoplatelets and Iron Oxide Nanoparticles. Key Engineering Materials, 2019, 800, 195-199.	0.4	1
36	Finite Element Simulation of Indentation Experiment on Branched Epoxy Novolac Resin. IOP Conference Series: Materials Science and Engineering, 2019, 500, 012006.	0.3	2

#	Article	IF	CITATIONS
37	Structure Development in Polymers during Fused Filament Fabrication (FFF): An in Situ Small- and Wide-Angle X-ray Scattering Study Using Synchrotron Radiation. Macromolecules, 2019, 52, 9715-9723.	2.2	45
38	Enhanced mechanical, conductivity, and dielectric characteristics of ethylene vinyl acetate copolymer composite filled with carbon nanotubes. Journal of Thermoplastic Composite Materials, 2018, 31, 1161-1180.	2.6	22
39	Viscoelastic and Thermal Properties of Polyurethane Foams Obtained from Renewable and Recyclable Components. Journal of Renewable Materials, 2018, , .	1.1	1
40	UV-light-induced curing of branched epoxy novolac resin for coatings. EXPRESS Polymer Letters, 2018, 12, 918-929.	1.1	20
41	Polyurethane rigid foams obtained from polyols containing bio-based and recycled components and functional additives. Industrial Crops and Products, 2017, 102, 133-143.	2.5	49
42	Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012077.	0.3	0
43	Preparation and characterization of hot-pressed Li ⁺ ion conducting PEO composite electrolytes. IOP Conference Series: Materials Science and Engineering, 2016, 111, 012016.	0.3	6
44	Effect of Low-Content of Graphene and Carbon Nanotubes on Dielectric Properties of Polyethylene Oxide Solid Composite Electrolyte. Key Engineering Materials, 2016, 721, 18-22.	0.4	1
45	Microwave Synthesis Of Polyols For Urethane Materials. IOP Conference Series: Materials Science and Engineering, 2016, 111, 012015.	0.3	2
46	Manufacturing of amber particles suitable for composite fibre melt spinning. Proceedings of the Latvian Academy of Sciences, 2016, 70, 51-57.	0.0	5
47	Thermo-mechanical properties of polyurethane modified with graphite oxide and carbon nanotube particles. Integrated Ferroelectrics, 2016, 173, 1-11.	0.3	18
48	Application of amber filler for production of novel polyamide composite fiber. Textile Reseach Journal, 2016, 86, 2127-2139.	1.1	16
49	Characterization of Strong and Crystalline Polyvinyl Alcohol/Montmorillonite Films Prepared by Layer-by-Layer Deposition Method. International Journal of Polymer Science, 2015, 2015, 1-8.	1.2	24
50	Enhanced stability of PVA electrospun fibers in water by adding cellulose nanocrystals. Holzforschung, 2015, 69, 737-743.	0.9	23
51	Development of a composite with an inherent function of visualization of a mechanical action. Mechanics of Composite Materials, 2013, 49, 77-84.	0.9	20
52	Mechanical properties of a rigid polyurethane/montmorillonite composite prepared by using a biopolyol. Mechanics of Composite Materials, 2013, 49, 333-344.	0.9	10
53	Influence of Nanoclay Additive on Mechanical Properties of Bio-Based Polyurethane Nanocomposites. Key Engineering Materials, 2013, 559, 37-42.	0.4	1
54	Preparation and Structural Properties of Free Films from Rapeseed Oil-Based Rigid Polyurethane-Montmorillonite Nanocomposites. International Journal of Polymer Science, 2013, 2013, 1-8.	1.2	13

#	Article	IF	CITATIONS
55	Structure and Mechanical Properties of Melt Intercalated Po1lypropylene–Organomontmorillonite Nanocomposites. Composite Interfaces, 2010, 17, 705-715.	1.3	Ο
56	Producing of concrete by using a dolomite waste as an alternative filler. ÉpÃŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2009, 61, 44-47.	0.0	1
57	Moisture permeability of a polymer nanocomposite containing unmodified clay. Mechanics of Composite Materials, 2008, 44, 505-514.	0.9	18
58	Preparation and mechanical properties of intercalated PP/OMMT nanocomposites. Journal of Physics: Conference Series, 2007, 93, 012030.	0.3	0
59	A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay 1. Preparation, testing, and properties. Mechanics of Composite Materials, 2006, 42, 45-54.	0.9	16
60	A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay 2. Modeling the elastic properties. Mechanics of Composite Materials, 2006, 42, 163-172.	0.9	14
61	Nanocomposites based on a styrene-acrylate copolymer and organically modified montmorillonite 1. Mechanical properties. Mechanics of Composite Materials, 2006, 42, 263-272.	0.9	6
62	A nanocomposite based on a styrene-acrylate copolymer and organically modified montmorillonite 2. Barrier and thermal properties. Mechanics of Composite Materials, 2006, 42, 353-362.	0.9	5
63	On PEO-Based MWCNT and Graphene Composite Electrolyte Structure. Key Engineering Materials, 0, 762, 209-214.	0.4	1