List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1743205/publications.pdf Version: 2024-02-01

Ηιρολκί Τλολ

#	Article	IF	CITATIONS
1	Rational design for gold nanoparticle-based plasmonic catalysts and electrodes for water oxidation towards artificial photosynthesis. Dalton Transactions, 2022, 51, 3383-3393.	1.6	12
2	Photocatalytic Activity of Radial Rutile Titanium(IV) Oxide Microspheres for Aerobic Oxidation of Organics. ChemPhysChem, 2022, 23, e202200015.	1.0	0
3	Front Cover: Photocatalytic Activity of Radial Rutile Titanium(IV) Oxide Microspheres for Aerobic Oxidation of Organics (ChemPhysChem 3/2022). ChemPhysChem, 2022, 23, .	1.0	0
4	Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction. Langmuir, 2022, 38, 4785-4792.	1.6	7
5	Photocatalytic Activity of Radial Rutile Titanium(IV) Oxide Microspheres for Aerobic Oxidation of Organics. ChemPhysChem, 2022, 23, .	1.0	0
6	Noble Metalâ€Free Inorganic Photocatalyst Consisting of Antimonyâ€Doped Tin Oxide Nanorod and Titanium oxide for Twoâ€Electron Oxygen Reduction Reaction. ChemPhysChem, 2022, 23, .	1.0	2
7	Antimony-Doped Tin Oxide Catalysts for Green and Sustainable Chemistry. Journal of Physical Chemistry C, 2022, 126, 13539-13547.	1.5	6
8	Cover Feature: Photothermal Oxidation of Cinnamyl Alcohol with Hydrogen Peroxide Catalyzed by Gold Nanoparticle/Antimonyâ€Doped Tin Oxide Nanocrystals (Chem. Eur. J. 46/2022). Chemistry - A European Journal, 2022, 28, .	1.7	0
9	Optical Hot Spot Generation by the Plasmonic Coupling of Au Nanoparticles in the Nanospaces of Mesoporous Titanium(IV) Oxide. Langmuir, 2021, 37, 1838-1842.	1.6	2
10	Bottom-up formation of gold truncated pyramids smaller than 10 nm on SrTiO3 nanocubes: an application for plasmonic water oxidation. Chemical Communications, 2021, 57, 7232-7235.	2.2	3
11	Ammonium ion-promoted electrochemical production of synthetic gas from water and carbon dioxide on a fluorine-doped tin oxide electrode. Chemical Communications, 2021, 57, 1438-1441.	2.2	2
12	Atomic Level Interface Control of SnO2-TiO2 Nanohybrids for the Photocatalytic Activity Enhancement. Catalysts, 2021, 11, 205.	1.6	8
13	A Photothermal Catalyst Consisting of Manganese Oxide Clusters and Antimony-doped Tin Oxide Nanocrystal: Application to Environmental Purification. Chemistry Letters, 2021, 50, 1372-1374.	0.7	3
14	A heteromesocrystal photocatalyst consisting of SnO2(head)-TiO2(tail) nanorod hybrids. Catalysis Communications, 2021, 154, 106301.	1.6	3
15	Hydrogen Peroxide Production from Oxygen and Water by Two-electrode Electrolytic Cell Using a Gold Nanoparticle-loaded Fluorine-doped Tin Oxide Cathode. Chemistry Letters, 2021, 50, 1589-1591.	0.7	3
16	Photocatalysis of Ag Nanoparticle-incorporated AgI Formed in the Pores of Mesoporous TiO ₂ Film. Chemistry Letters, 2021, 50, 1872-1874.	0.7	1
17	Thermocatalytic Activity of Gold Truncated Nanopyramids on Strontium Titanate Nanocube. Chemistry Letters, 2021, 50, 1997-2000.	0.7	3
18	Radial TiO2 Nanorod-Based Mesocrystals: Synthesis, Characterization, and Applications. Catalysts, 2021, 11, 1298.	1.6	6

#	Article	IF	CITATIONS
19	Switching of Electron Transport Direction from the Long Axis to Short Axis in a Radial SnO ₂ (Head)–Rutile TiO ₂ Nanorod(Tail) Heteromesocrystal Photocatalyst. Journal of Physical Chemistry Letters, 2021, 12, 11717-11722.	2.1	4
20	Action of chloride ions as a habit modifier in the hydrothermal crystal growth of rutile TiO2 nanorod from SnO2 seed crystal. Chemical Physics Letters, 2020, 761, 138003.	1.2	6
21	Nanohybrid Crystals with Heteroepitaxial Junctions for Solar-to-Chemical Transformations. Journal of Physical Chemistry C, 2020, 124, 25657-25666.	1.5	7
22	Symmetry Breaking Induced by Growth Kinetics: Oneâ€Pot Synthesis of Janus Auâ^'AgBr Nanoparticles. ChemNanoMat, 2020, 6, 1485-1495.	1.5	5
23	Hydrogen peroxide synthesis from water and oxygen using a three-component nanohybrid photocatalyst consisting of Au particle-loaded rutile TiO2 and RuO2 with a heteroepitaxial junction. Chemical Communications, 2020, 56, 8190-8193.	2.2	12
24	Au–Ag alloy nanoparticle-incorporated AgBr plasmonic photocatalyst. Scientific Reports, 2020, 10, 19972.	1.6	6
25	Photothermal effect of antimony-doped tin oxide nanocrystals on the photocatalysis. Catalysis Communications, 2020, 142, 106044.	1.6	8
26	Low-temperature selective aerobic oxidation of cyclohexanol to cyclohexanone over n-type metal oxide-supported Au nanoparticles. Catalysis Communications, 2020, 144, 106089.	1.6	3
27	Size effect of zinc oxide-supported gold nanoparticles on the photocatalytic activity for two-electron oxygen reduction reaction. Catalysis Communications, 2020, 144, 106076.	1.6	9
28	A Three-Component Plasmonic Photocatalyst Consisting of Gold Nanoparticle and TiO2–SnO2 Nanohybrid with Heteroepitaxial Junction: Hydrogen Peroxide Synthesis. Journal of Physical Chemistry C, 2020, 124, 7797-7802.	1.5	22
29	Electrocatalytic Effect on the Photon-to-Current Conversion Efficiency of Gold-Nanoparticle-Loaded Titanium(IV) Oxide Plasmonic Electrodes for Water Oxidation. Journal of Physical Chemistry C, 2020, 124, 6103-6109.	1.5	8
30	Visible-Light-Driven Hydrogen Peroxide Synthesis by a Hybrid Photocatalyst Consisting of Bismuth Vanadate and Bis(hexafluoroacetylacetonato)copper(II) Complex. Journal of Physical Chemistry C, 2020, 124, 3715-3721.	1.5	17
31	Heat treatment effect of a hybrid consisting of SnO2 nanorod and rutile TiO2 with heteroepitaxial junction on the photocatalytic activity. Catalysis Communications, 2020, 147, 106148.	1.6	6
32	Copper Oxide Cluster Surface Modification-Induced Multiple Electron Oxygen Reduction Reaction on Bismuth Vanadate under Visible-Light Irradiation. Journal of the Electrochemical Society, 2020, 167, 116523.	1.3	2
33	Heteronanostructured Photocatalysts with Epitaxial Junctions between the Components. ECS Meeting Abstracts, 2020, MA2020-02, 3077-3077.	0.0	0
34	Highly Efficient and Selective Oxidation of Ethanol to Acetaldehyde by a Hybrid Photocatalyst Consisting of SnO 2 Nanorod and Rutile TiO 2 with Heteroepitaxial Junction. ChemPhysChem, 2019, 20, 2155-2161.	1.0	26
35	Ultrathin Silicon Oxide Filmâ€Induced Enhancement of Charge Separation and Transport of Nanostructured Titanium(IV) Oxide Photoelectrode. ChemPhysChem, 2019, 20, 2054-2059.	1.0	6
36	Highly Efficient and Selective Oxidation of Ethanol to Acetaldehyde by a Hybrid Photocatalyst Consisting of SnO ₂ Nanorod and Rutile TiO ₂ with Heteroepitaxial Junction. ChemPhysChem, 2019, 20, 2138-2138.	1.0	0

#	Article	IF	CITATIONS
37	Synthesis of Au–Ag Alloy Nanoparticle-Incorporated AgBr Crystals. Catalysts, 2019, 9, 745.	1.6	7
38	Size, shape and interface control in gold nanoparticle-based plasmonic photocatalysts for solar-to-chemical transformations. Dalton Transactions, 2019, 48, 6308-6313.	1.6	23
39	Nanohybrid Catalysts for Efficient Synthesis of Hydrogen Peroxide at Ambient Temperature and Pressure. Journal of Physical Chemistry C, 2019, 123, 9831-9837.	1.5	9
40	Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. Nanoscale Advances, 2019, 1, 4238-4245.	2.2	47
41	Synthesis of 1D-Anisotropic Particles Consisting of TiO ₂ Nanorods and SnO ₂ with Heteroepitaxial Junctions and Self-Assembled 3D-Microspheres. Langmuir, 2019, 35, 17096-17102.	1.6	8
42	One-Compartment Hydrogen Peroxide-Photofuel Cell Using TiO ₂ Photoanode and Prussian Blue Cathode. Journal of the Electrochemical Society, 2018, 165, F300-F304.	1.3	9
43	Red-Light-Driven Water Splitting by Au(Core)–CdS(Shell) Half-Cut Nanoegg with Heteroepitaxial Junction. Journal of the American Chemical Society, 2018, 140, 1251-1254.	6.6	147
44	Solar-Driven One-Compartment Hydrogen Peroxide-Photofuel Cell Using Bismuth Vanadate Photoanode. ACS Omega, 2018, 3, 12099-12105.	1.6	17
45	Au (Core)–Pt (Shell) Nanocatalysts with the Shell Thickness Controlled at a Monolayer Level: Extremely High Activity for Hydrogen Peroxide Decomposition. Journal of Physical Chemistry C, 2018, 122, 22953-22958.	1.5	4
46	Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion. MRS Communications, 2018, 8, 754-764.	0.8	2
47	Water splitting by plasmonic photocatalysts with a gold nanoparticle/cadmium sulfide heteroepitaxial junction: A mini review. Electrochemistry Communications, 2018, 97, 22-26.	2.3	16
48	Dependence of the plasmonic activity of Au/TiO2 for the decomposition of 2-naphthol on the crystal form of TiO2 and Au particle size. Journal of Catalysis, 2018, 364, 328-333.	3.1	26
49	In Situ Shape Change of Au Nanoparticles on TiO ₂ by CdS Photodeposition: Its Near-Field Enhancement Effect on Photoinduced Electron Injection from CdS to TiO ₂ . ACS Omega, 2018, 3, 6104-6112.	1.6	13
50	Photo-effect on the electromotive force in two-compartment hydrogen peroxide-photofuel cell. Electrochemistry Communications, 2018, 93, 31-34.	2.3	9
51	Au Nanoparticle-Semiconductor Plasmonic Photocatalyst for Solar Material and Energy Conversions : Au Particle Size Effect. Journal of the Japan Society of Colour Material, 2018, 91, 122-127.	0.0	0
52	Gold(Core)–Lead(Shell) Nanoparticle‣oaded Titanium(IV) Oxide Prepared by Underpotential Photodeposition: Plasmonic Water Oxidation. Angewandte Chemie, 2017, 129, 10483-10487.	1.6	6
53	Gold(Core)–Lead(Shell) Nanoparticleâ€Loaded Titanium(IV) Oxide Prepared by Underpotential Photodeposition: Plasmonic Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 10347-10351.	7.2	31
54	A dry process for forming ultrathin silicon oxide film on gold nanoparticle. Applied Physics Letters, 2017, 110, 143108.	1.5	2

#	Article	IF	CITATIONS
55	Electron Filtering by an Intervening ZnS Thin Film in the Gold Nanoparticle-Loaded CdS Plasmonic Photocatalyst. Journal of Physical Chemistry Letters, 2017, 8, 86-90.	2.1	13
56	Hydrogen peroxide-photofuel cell using TiO2 photoanode. Electrochemistry Communications, 2017, 84, 71-74.	2.3	19
57	Photocatalytic Synthesis of CdS(core)–CdSe(shell) Quantum Dots with a Heteroepitaxial Junction on TiO ₂ : Photoelectrochemical Hydrogen Generation from Water. ChemPhysChem, 2017, 18, 2827-2827.	1.0	1
58	Photocatalytic Synthesis of CdS(core)–CdSe(shell) Quantum Dots with a Heteroepitaxial Junction on TiO ₂ : Photoelectrochemical Hydrogen Generation from Water. ChemPhysChem, 2017, 18, 2840-2845.	1.0	13
59	Rapid Removal and Mineralization of Bisphenol A by Heterosupramolecular Plasmonic Photocatalyst Consisting of Gold Nanoparticle-Loaded Titanium(IV) Oxide and Surfactant Admicelle. Langmuir, 2017, 33, 10468-10472.	1.6	5
60	Plasmonic effect in Au(core)-CdS(shell) quantum dot-sensitized photoelectrochemical cell for hydrogen generation from water. Applied Physics Letters, 2017, 111, .	1.5	10
61	Solid-Phase Photochemical Growth of Composition-Variable Au–Ag Alloy Nanoparticles in AgBr Crystal. Journal of Physical Chemistry C, 2017, 121, 20763-20768.	1.5	6
62	Sizeâ€Ðependence of the Activity of Gold Nanoparticle‣oaded Titanium(IV) Oxide Plasmonic Photocatalyst for Water Oxidation. ChemPhysChem, 2016, 17, 2813-2817.	1.0	37
63	Fermi Level Control of Cold Nanoparticle by the Support: Activation of the Catalysis for Selective Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2016, 120, 12440-12445.	1.5	23
64	Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation. Journal of Colloid and Interface Science, 2016, 474, 34-40.	5.0	19
65	Goldâ€Nanoparticle‣oaded Carbonateâ€Modified Titanium(IV) Oxide Surface: Visible‣ightâ€Driven Formatio of Hydrogen Peroxide from Oxygen. Angewandte Chemie - International Edition, 2016, 55, 12773-12777.	n 7.2	111
66	Local Electric Field-Enhanced Plasmonic Photocatalyst: Formation of Ag Cluster-Incorporated AgBr Nanoparticles on TiO ₂ . Journal of Physical Chemistry C, 2016, 120, 19663-19669.	1.5	44
67	Two-Step Excitation-Driven Au–TiO2–CuO Three-Component Plasmonic Photocatalyst: Selective Aerobic Oxidation of Cyclohexylamine to Cyclohexanone. Journal of Physical Chemistry C, 2016, 120, 27989-27995.	1.5	16
68	Reaction Mechanism of the Multiple-Electron Oxygen Reduction Reaction on the Surfaces of Gold and Platinum Nanoparticles Loaded on Titanium(IV) Oxide. Journal of Physical Chemistry Letters, 2016, 7, 5002-5007.	2.1	32
69	Goldâ€Nanoparticleâ€Loaded Carbonateâ€Modified Titanium(IV) Oxide Surface: Visibleâ€Lightâ€Driven Formatio of Hydrogen Peroxide from Oxygen. Angewandte Chemie, 2016, 128, 12965-12969.	n 1.6	20
70	High Coverage Formation of CdS Quantum Dots on TiO ₂ by the Photocatalytic Growth of Preformed Seeds. Journal of Physical Chemistry C, 2016, 120, 17365-17371.	1.5	34
71	Visible-light-induced water oxidation by a hybrid photocatalyst consisting of bismuth vanadate and copper(<scp>ii</scp>) meso-tetra(4-carboxyphenyl)porphyrin. Chemical Communications, 2016, 52, 3665-3668.	2.2	39
72	Temperature- and pH-Dependence of Hydrogen Peroxide Formation from Molecular Oxygen by Gold Nanoparticle-Loaded Titanium(IV) Oxide Photocatalyst. Journal of Physical Chemistry C, 2016, 120, 1083-1088.	1.5	51

#	Article	IF	CITATIONS
73	Mechanism of the Multipleâ€Electron Oxygen Reduction Reaction in the Presence of the Binuclear Cu(acac) ₂ Complex. ChemPhysChem, 2015, 16, 3392-3396.	1.0	2
74	Rapid removal and decomposition of gaseous acetaldehyde by the thermo- and photo-catalysis of gold nanoparticle-loaded anatase titanium(IV) oxide. Journal of Colloid and Interface Science, 2015, 456, 161-165.	5.0	11
75	A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support. APL Materials, 2015, 3, .	2.2	35
76	A bi-overlayer type plasmonic photocatalyst consisting of mesoporous Au/TiO ₂ and CuO/SnO ₂ films separately coated on FTO. Physical Chemistry Chemical Physics, 2015, 17, 18004-18010.	1.3	6
77	Subâ€Bandgap Excitationâ€Induced Electron Injection from CdSe Quantum Dots to TiO ₂ in a Directly Coupled System. ChemPhysChem, 2015, 16, 1846-1851.	1.0	12
78	Visible Light-Driven Selective Aerobic Oxidation of Benzylalcohols to Benzaldehydes by a Cu(acac) ₂ -BiVO ₄ -Admicelle Three-Component Heterosupramolecular Photocatalyst. Journal of Physical Chemistry C, 2015, 119, 11771-11776.	1.5	18
79	Rapid removal and subsequent low-temperature mineralization of gaseous acetaldehyde by the dual thermocatalysis of gold nanoparticle-loaded titanium(IV) oxide. Journal of Catalysis, 2015, 326, 9-14.	3.1	24
80	Lead selenide–Titanium dioxide heteronanojunction formation by photocatalytic current doubling-induced two-step photodeposition technique. Journal of Colloid and Interface Science, 2015, 457, 248-253.	5.0	7
81	Room-temperature selective oxidation of 2-naphthol to BINOL using a Au/SrTiO ₃ –H ₂ O ₂ catalytic system. Chemical Communications, 2015, 51, 17669-17671.	2.2	15
82	Surface charge-transfer complex formation of catechol on titanium(IV) oxide and the application to bio-sensing. Journal of Colloid and Interface Science, 2015, 458, 305-309.	5.0	17
83	Visibleâ€Lightâ€Induced Electron Transport from Small to Large Nanoparticles in Bimodal Gold Nanoparticleâ€Loaded Titanium(IV) Oxide. Angewandte Chemie, 2014, 126, 7433-7437.	1.6	22
84	Molecular-Scale Transition Metal Oxide Nanocluster Surface-Modified Titanium Dioxide as Solar-Activated Environmental Catalysts. Journal of Physical Chemistry C, 2014, 118, 12077-12086.	1.5	80
85	Highly Active Supported Plasmonic Photocatalyst Consisting of Gold Nanoparticle-Loaded Mesoporous Titanium(IV) Oxide Overlayer and Conducting Substrate. Journal of Physical Chemistry C, 2014, 118, 26887-26893.	1.5	17
86	Multiâ€Electron Oxygen Reduction by a Hybrid Visibleâ€Lightâ€Photocatalyst Consisting of Metalâ€Oxide Semiconductor and Selfâ€Assembled Biomimetic Complex. Angewandte Chemie - International Edition, 2014, 53, 13894-13897.	7.2	34
87	Photocatalytic Current Doubling-Induced Generation of Uniform Selenium and Cadmium Selenide Quantum Dots on Titanium(IV) Oxide. Journal of Physical Chemistry C, 2014, 118, 8917-8924.	1.5	22
88	Visibleâ€Lightâ€Induced Electron Transport from Small to Large Nanoparticles in Bimodal Gold Nanoparticleâ€Loaded Titanium(IV) Oxide. Angewandte Chemie - International Edition, 2014, 53, 7305-7309.	7.2	91
89	Photodeposition of copper sulphide nanocrystals on titanium(iv) oxide nanorods and their application in smart windows. RSC Advances, 2013, 3, 10414.	1.7	21
90	Simultaneous induction of high level thermal and visible-light catalytic activities to titanium(iv) oxide by surface modification with cobalt(iii) oxide clusters. Physical Chemistry Chemical Physics, 2013, 15, 20313.	1.3	24

#	Article	IF	CITATIONS
91	In situ room temperature synthesis of a polyaniline–gold–titanium(<scp>iv</scp>) dioxide heteronanojunction system. Chemical Communications, 2013, 49, 520-522.	2.2	10
92	One-Step Selective Aerobic Oxidation of Amines to Imines by Gold Nanoparticle-Loaded Rutile Titanium(IV) Oxide Plasmon Photocatalyst. ACS Catalysis, 2013, 3, 10-13.	5.5	171
93	Rapid and Complete Removal of Nonylphenol by Gold Nanoparticle/Rutile Titanium(IV) Oxide Plasmon Photocatalyst. ACS Catalysis, 2013, 3, 903-907.	5.5	47
94	Origin of the Visible-Light Response of Nickel(II) Oxide Cluster Surface Modified Titanium(IV) Dioxide. Journal of Physical Chemistry C, 2013, 117, 2709-2718.	1.5	68
95	Loading Effect in Copper(II) Oxide Cluster-Surface-Modified Titanium(IV) Oxide on Visible- and UV-Light Activities. Journal of Physical Chemistry C, 2013, 117, 23848-23857.	1.5	65
96	Manganese Oxide-Surface Modified Titanium (IV) Dioxide as Environmental Catalyst. Catalysts, 2013, 3, 444-454.	1.6	39
97	Low temperature-synthesis of BiVO4 nanorods using polyethylene glycol as a soft template and the visible-light-activity for copper acetylacetonate decomposition. Applied Catalysis B: Environmental, 2012, 125, 288-293.	10.8	75
98	Molecular Metal Oxide Cluster-Surface Modified Titanium(IV) Dioxide Photocatalysts. Australian Journal of Chemistry, 2012, 65, 624.	0.5	36
99	TiO ₂ Crystal Form-Dependence of the Au/TiO ₂ Plasmon Photocatalyst's Activity. Journal of Physical Chemistry C, 2012, 116, 7111-7117.	1.5	132
100	Prediction of the Main Route in the TiO ₂ â€Photocatalyzed Degradation of Organic Compounds in Water by Density Functional Calculations. ChemPhysChem, 2012, 13, 3457-3461.	1.0	19
101	A strong support-effect on the catalytic activity of gold nanoparticles for hydrogen peroxide decomposition. Chemical Communications, 2011, 47, 3230.	2.2	53
102	Nickel(ii) oxide surface-modified titanium(iv) dioxide as a visible-light-active photocatalyst. Chemical Communications, 2011, 47, 8814.	2.2	59
103	Visible-Light-Driven Copper Acetylacetonate Decomposition by BiVO ₄ . Langmuir, 2011, 27, 10334-10339.	1.6	34
104	Photodeposition of Ag ₂ S Quantum Dots and Application to Photoelectrochemical Cells for Hydrogen Production under Simulated Sunlight. Langmuir, 2011, 27, 7294-7300.	1.6	94
105	Photodeposition of metal sulfide quantum dots on titanium(iv) dioxide and the applications to solar energy conversion. Chemical Society Reviews, 2011, 40, 4232.	18.7	219
106	Visible-Light-Active Iron Oxide-Modified Anatase Titanium(IV) Dioxide. Journal of Physical Chemistry C, 2011, 115, 6478-6483.	1.5	92
107	Visibleâ€Light Activity Enhancement of Goldâ€Nanoparticleâ€Loaded Titanium(IV) Dioxide by Preferential Excitation of Localized Surface Plasmon Resonance. ChemPhysChem, 2011, 12, 2719-2723.	1.0	23
108	Titanium(IV) Dioxide Surfaceâ€Modified with Iron Oxide as a Visible Light Photocatalyst. Angewandte Chemie - International Edition, 2011, 50, 3501-3505.	7.2	202

#	Article	IF	CITATIONS
109	Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism. Journal of Colloid and Interface Science, 2011, 354, 607-610.	5.0	105
110	Interfacial chemical bonding effect on the photocatalytic activity of TiO2–SiO2 nanocoupling systems. Journal of Colloid and Interface Science, 2011, 361, 628-631.	5.0	35
111	Photodeposition of Metal Sulfide Quantum Dots on Titanium(IV) Dioxide and its Applications. Materials Research Society Symposia Proceedings, 2011, 1352, 141.	0.1	0
112	Ultrafast Photodeposition of Sizeâ€Controlled PbS Quantum Dots on TiO ₂ . ChemPhysChem, 2010, 11, 2349-2352.	1.0	21
113	PbS Quantum Dotâ€5ensitized Photoelectrochemical Cell for Hydrogen Production from Water under Illumination of Simulated Sunlight. ChemPhysChem, 2010, 11, 3592-3595.	1.0	52
114	Quantum-Dot-Sensitized Solar Cell Using a Photoanode Prepared by in Situ Photodeposition of CdS on Nanocrystalline TiO ₂ Films. Journal of Physical Chemistry C, 2010, 114, 16837-16842.	1.5	52
115	Self-Assembled Heterosupramolecular Visible Light Photocatalyst Consisting of Gold Nanoparticle-Loaded Titanium(IV) Dioxide and Surfactant. Journal of the American Chemical Society, 2010, 132, 6292-6293.	6.6	167
116	Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(iv) dioxide. Chemical Communications, 2010, 46, 815-817.	2.2	103
117	In Situ Liquid Phase Synthesis of Hydrogen Peroxide from Molecular Oxygen Using Gold Nanoparticle-Loaded Titanium(IV) Dioxide Photocatalyst. Journal of the American Chemical Society, 2010, 132, 7850-7851.	6.6	265
118	Sizeâ€Dependence of Catalytic Activity of Gold Nanoparticles Loaded on Titanium (IV) Dioxide for Hydrogen Peroxide Decomposition. ChemPhysChem, 2009, 10, 2935-2938.	1.0	76
119	Photodeposition of CdS Quantum Dots on TiO ₂ : Preparation, Characterization, and Reaction Mechanism. Journal of Physical Chemistry C, 2009, 113, 16711-16716.	1.5	86
120	Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(iv) dioxide. Chemical Society Reviews, 2009, 38, 1849.	18.7	315
121	Electrochemically regenerative visible light-induced reactivity of α-Fe2O3 films with Ag(core)–AgCl(shell) microcrystal composites. Electrochemistry Communications, 2008, 10, 1132-1135.	2.3	12
122	Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(iv) dioxide at photostationary state. Physical Chemistry Chemical Physics, 2008, 10, 6553.	1.3	78
123	A green process for coupling manganese oxides with titanium(iv) dioxide. Chemical Communications, 2008, , 3564.	2.2	19
124	SiOx Ultrathin Layer Coverage Effect on the (Photo)catalytic Activities of Rutile TiO2. Journal of Physical Chemistry C, 2008, 112, 8702-8707.	1.5	25
125	Photoinduced Sulfur Desorption from Platinum Nanoparticles Loaded on Titanium Dioxide. Chemistry Letters, 2007, 36, 1214-1215.	0.7	5
126	Electrochemically Assisted Visible Light Photocatalysis in a Heterosupramolecular System Consisting of α-Fe2O3 and Surfactant Molecular Assembly. Langmuir, 2007, 23, 8593-8596.	1.6	20

#	Article	IF	CITATIONS
127	Ag(core)–AgCl(shell) standard microelectrode-loaded TiO2. Chemical Communications, 2007, , 4291.	2.2	38
128	Dispersion stability of TiO2 nanoparticles covered with SiOx monolayers in water. Journal of Colloid and Interface Science, 2007, 306, 274-280.	5.0	11
129	Low-Temperature Photocleaning of Sulfur-Poisoned Au Nanoparticles on Titanium Dioxide Film. Electrochemical and Solid-State Letters, 2006, 9, E9.	2.2	5
130	Ultrafast Photosynthetic Reduction of Elemental Sulfur by Au Nanoparticle-Loaded TiO2. Journal of Physical Chemistry B, 2006, 110, 10771-10778.	1.2	54
131	Optical Properties of Au-Ag Alternate Nanowires Prepared Using Anodized Aluminum Porous Films as a Template. Journal of the Japan Society of Colour Material, 2006, 79, 55-61.	0.0	0
132	Multicolor Anodized Aluminum Film with Gold and Silver Nanorod Array. Journal of the Japan Society of Colour Material, 2006, 79, 190-196.	0.0	2
133	All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature Materials, 2006, 5, 782-786.	13.3	1,266
134	Visible light photocatalytic decomposition of 2-naphthol by anodic-biased α-Fe2O3 film. Journal of Colloid and Interface Science, 2006, 294, 504-507.	5.0	43
135	Surface Properties and Photocatalytic Activity of Ptcore/Agshell Nanoparticle-Loaded TiO2. ChemPhysChem, 2006, 7, 1687-1691.	1.0	19
136	Electrolytic Coloring with Cobalt of Anodized Aluminum. Journal of the Japan Society of Colour Material, 2005, 78, 2-6.	0.0	1
137	Kinetic and DFT Studies on the Ag/TiO2-Photocatalyzed Selective Reduction of Nitrobenzene to Aniline. ChemPhysChem, 2005, 6, 1537-1543.	1.0	64
138	Kinetic and DFT Studies on the Photoinduced Desorption of Sulfur from Gold Nanoparticles Loaded on Titanium Dioxide. ChemPhysChem, 2005, 6, 2508-2512.	1.0	8
139	Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity. Journal of Colloid and Interface Science, 2005, 281, 510-513.	5.0	119
140	Photoinduced dissolution and redeposition of Au nanoparticles supported on TiO2. Journal of Colloid and Interface Science, 2005, 286, 816-819.	5.0	14
141	Photoinduced Desorption of Sulfur from Gold Nanoparticles Loaded on Metal Oxide Surfaces. Journal of the American Chemical Society, 2004, 126, 15952-15953.	6.6	47
142	Patterned TiO2/SnO2Bilayer Type Photocatalyst. 3. Preferential Deposition of Pt Particles on the SnO2Underlayer and Its Effect on Photocatalytic Activity. Langmuir, 2004, 20, 3816-3819.	1.6	21
143	Deactivation of the TiO2Photocatalyst by Coupling with WO3and the Electrochemically Assisted High Photocatalytic Activity of WO3. Langmuir, 2004, 20, 4665-4670.	1.6	86
144	Drastic Enhancement of TiO2-Photocatalyzed Reduction of Nitrobenzene by Loading Ag Clusters. Langmuir, 2004, 20, 7898-7900.	1.6	169

#	Article	IF	CITATIONS
145	One-Pot Process for Anodic Oxide Films of Titanium with High Photocatalytic Activity. Materials Transactions, 2004, 45, 1607-1612.	0.4	11
146	A Large-Area Patterned TiO2/SnO2 Bilayer Type Photocatalyst Prepared by Gravure Printing. Journal of Sol-Gel Science and Technology, 2003, 27, 301-307.	1.1	19
147	Photocatalytic activity of rutile–anatase coupled TiO2 particles prepared by a dissolution–reprecipitation method. Journal of Colloid and Interface Science, 2003, 267, 377-381.	5.0	134
148	Au-Core/Pt-Shell Bimetallic Cluster-Loaded TiO2. 1. Adsorption of Organosulfur Compound. Journal of Physical Chemistry B, 2002, 106, 8714-8720.	1.2	97
149	Formation of Au Nanoclusters on TiO2Surfaces by a Two-Step Method Consisting of Au(III)-Complex Chemisorption and Its Photoreduction. Langmuir, 2002, 18, 4191-4194.	1.6	49
150	Heterosupramolecular photocatalysis: oxidation of organic compounds in nanospaces between surfactant bilayers formed on TiO2Electronic supplementary information available: further characterization data and experimental details. See http://www.rsc.org/suppdata/cc/b2/b204593a/. Chemical Communications, 2002, , 1678-1679.	2.2	39
151	A Patterned TiO2(Anatase)/TiO2(Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity. Angewandte Chemie - International Edition, 2002, 41, 2811-2813.	7.2	445
152	Adsorption of 2,2′-Dipyridyl Disulfide on Au/Pt Core/Shell Bimetallic Clusters Loaded on TiO2: Fine Control of Adsorptivity for Organosulfur Compounds. ChemPhysChem, 2002, 3, 617-620.	1.0	7
153	Patterned TiO2/SnO2 Bilayer Type Photocatalyst. 2. Efficient Dehydrogenation of Methanol. Langmuir, 2001, 17, 7442-7445.	1.6	65
154	The effect of nanometre-sized Au particle loading on TiO2 photocatalysed reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H2O. Physical Chemistry Chemical Physics, 2001, 3, 1376-1382.	1.3	27
155	Photocatalytically Active Nanocomposite Films Consisting of TiO2 Particles and Zn-Ni Alloy Electrodeposited on Steel Plates. Journal of the Japan Society of Colour Material, 2001, 74, 437-443.	0.0	0
156	Photocatalytic Activity of Anodized Titanium Plates Prepared in a Bath Containing SnO2 and TiO2 Particles through 2-Step Anodization. Journal of the Japan Society of Colour Material, 2001, 74, 332-338.	0.0	2
157	Photodeposition of Prussian Blue Films on TiO2: Additive Effect of Methanol and Influence of the TiO2 Crystal Form. Journal of Colloid and Interface Science, 2001, 239, 196-199.	5.0	10
158	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 22, 53-61.	1.1	60
159	High Photocatalytic Activity of F-Doped TiO2 Film on Glass. Journal of Sol-Gel Science and Technology, 2001, 22, 47-52.	1.1	101
160	Photocatalytic Activity of Anodic Oxide Film on Titanium Plate Prepared in TiO2 Particle Containing Bath. Journal of the Japan Society of Colour Material, 2000, 73, 587-593.	0.0	3
161	Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. Journal of Colloid and Interface Science, 2000, 224, 202-204.	5.0	278
162	Ultrathin SiOx Film Coating Effect on the Wettability Change of TiO2 Surfaces in the Presence and Absence of UV Light Illumination. Journal of Colloid and Interface Science, 2000, 232, 410-413.	5.0	35

#	Article	IF	CITATIONS
163	Ag Nanocluster Loading Effect on TiO2Photocatalytic Reduction of Bis(2-dipyridyl)disulfide to 2-Mercaptopyridine by H2O. Langmuir, 2000, 16, 3304-3309.	1.6	135
164	A Patterned-TiO2/SnO2 Bilayer Type Photocatalyst. Journal of Physical Chemistry B, 2000, 104, 4585-4587.	1.2	229
165	Low-Temperature Synthesis of Nanometer-Sized Crystalline TiO2 Particles and Their Photoinduced Decomposition of Formic Acid. Journal of Colloid and Interface Science, 1999, 216, 59-64.	5.0	89
166	Promoting Effect of MgOxSubmonolayer Coverage of TiO2on the Photoinduced Oxidation of Anionic Surfactants. Langmuir, 1999, 15, 3699-3702.	1.6	69
167	Additive Effect of Sacrificial Electron Donors on Ag/TiO2Photocatalytic Reduction of Bis(2-dipyridyl)disulfide to 2-Mercaptopyridine in Aqueous Media. Langmuir, 1999, 15, 7084-7087.	1.6	35
168	Mechanism of Formation of Nanocrystalline ZnO Particles through the Reaction of [Zn(acac)2] with NaOH in EtOH. Journal of Colloid and Interface Science, 1998, 200, 220-227.	5.0	61
169	Enhancing Effect of SiOxMonolayer Coverage of TiO2on the Photoinduced Oxidation of Rhodamine 6G in Aqueous Media. Journal of Physical Chemistry B, 1998, 102, 6360-6366.	1.2	41
170	Promoting Effect of SiOxMonolayer Coverage of TiO2on the Photoinduced Oxidation of Cationic Surfactants. Langmuir, 1998, 14, 2936-2939.	1.6	40
171	Dependence of TiO2Photocatalytic Activity upon Its Film Thickness. Langmuir, 1997, 13, 360-364.	1.6	191
172	Conformational Change Restricted Selectivity in the Surface Sulfonation of Polypropylene with Sulfuric Acid. Langmuir, 1997, 13, 3982-3989.	1.6	32
173	Photoinduced Oxidation of Methylsiloxane Monolayers Chemisorbed on TiO2. Langmuir, 1996, 12, 966-971.	1.6	58
174	Layer-by-Layer Construction of SiOx Film on Oxide Semiconductors. Langmuir, 1995, 11, 3281-3284.	1.6	43
175	Correlations between Wetting and Structure in Methylsiloxane Layers on Oxides Formed by Chemical Vapor Surface Modification. The Journal of Physical Chemistry, 1994, 98, 12452-12457.	2.9	24
176	Photodeposition of Prussian Blue on TiO2 Particles. Journal of the Electrochemical Society, 1991, 138, 140-144.	1.3	13
177	Photoinduced polymerization of 1,3,5,7-tetramethylcyclotetrasiloxane by titania particles. The Journal of Physical Chemistry, 1991, 95, 10185-10188.	2.9	17
178	First-Transition Metal Oxocomplex–Surface-Modified Titanium(IV) Oxide for Solar Environmental Purification. , 0, , .		0
179	Photothermal Catalytic Oxidation of Cinnamyl Alcohol with Hydrogen Peroxide by Gold Nanoparticle/Antimonyâ€Doped Tin Oxide Nanocrystals. Chemistry - A European Journal, 0, , .	1.7	3