
Fabiana Bigi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1743033/publications.pdf Version: 2024-02-01

FARIANA RICI

#	Article	IF	CITATIONS
1	Virulence factors of the <i>Mycobacterium tuberculosis</i> complex. Virulence, 2013, 4, 3-66.	4.4	543
2	Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes and Infection, 2005, 7, 325-334.	1.9	148
3	Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis, 2014, 94, 170-177.	1.9	104
4	IFNG-mediated immune responses enhance autophagy against <i>Mycobacterium tuberculosis</i> antigens in patients with active tuberculosis. Autophagy, 2014, 10, 2109-2121.	9.1	63
5	Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in Mycobacterium tuberculosis. Microbiology (United Kingdom), 2009, 155, 2245-2255.	1.8	62
6	The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes and Infection, 2004, 6, 182-187.	1.9	61
7	Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes and Infection, 2012, 14, 590-599.	1.9	52
8	Negative transcriptional regulation of the mce3 operon in Mycobacterium tuberculosis. Microbiology (United Kingdom), 2002, 148, 2997-3006.	1.8	52
9	Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG. Protein and Cell, 2010, 1, 859-870.	11.0	48
10	Increased IL-17 expression is associated with pathology in a bovine model of tuberculosis. Tuberculosis, 2011, 91, 57-63.	1.9	46
11	A novel 27 kDa lipoprotein antigen from Mycobacterium bovis. Microbiology (United Kingdom), 1997, 143, 3599-3605.	1.8	43
12	Study of the role of Mce3R on the transcription of mce genes of Mycobacterium tuberculosis. BMC Microbiology, 2008, 8, 38.	3.3	40
13	Role of P27-P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC Infectious Diseases, 2011, 11, 195.	2.9	38
14	Transcriptional Response of Peripheral Blood Mononuclear Cells from Cattle Infected with Mycobacterium bovis. PLoS ONE, 2012, 7, e41066.	2.5	34
15	Differential transcriptome profiles of attenuated and hypervirulent strains of Mycobacterium bovis. Microbes and Infection, 2009, 11, 956-963.	1.9	31
16	Mycobacterium bovis Δmce2 double deletion mutant protects cattle against challenge with virulent M.Âbovis. Tuberculosis, 2013, 93, 363-372.	1.9	31
17	Immunogenicity and protection induced by Mycobacterium tuberculosis mce-2 and mce-3 mutants in a Balb/c mouse model of progressive pulmonary tuberculosis. Vaccine, 2006, 24, 2333-2342.	3.8	27
18	Identification of bovine tuberculosis biomarkers to detect tuberculin skin test and IFNγ release assay false negative cattle. Research in Veterinary Science, 2019, 122, 7-14.	1.9	26

Fabiana Bigi

#	Article	IF	CITATIONS
19	Mycobacterium bovis Requires P27 (LprG) To Arrest Phagosome Maturation and Replicate within Bovine Macrophages. Infection and Immunity, 2017, 85, .	2.2	25
20	Knockout mutation of <i>p27-p55</i> operon severely reduces replication of <i>Mycobacterium bovis</i> in a macrophagic cell line and survival in a mouse model of infection. Virulence, 2011, 2, 233-237.	4.4	24
21	Evaluation of pathogenesis caused in cattle and guinea pig by a Mycobacterium bovisstrain isolated from wild boar. BMC Veterinary Research, 2011, 7, 37.	1.9	23
22	Study of the immunological profile towards <i>Mycobacterium bovis</i> antigens in naturally infected cattle. Microbiology and Immunology, 2009, 53, 460-467.	1.4	21
23	Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system. BMC Molecular Biology, 2009, 10, 3.	3.0	20
24	Characterization of the two component regulatory system PhoPR in Mycobacterium bovis. Veterinary Microbiology, 2018, 222, 30-38.	1.9	17
25	Does Mycobacterium bovis persist in cattle in a non-replicative latent state as Mycobacterium tuberculosis in human beings?. Veterinary Microbiology, 2020, 247, 108758.	1.9	16
26	Mutation in the P36 gene of Mycobacterium bovis provokes attenuation of the bacillus in a mouse model. Tuberculosis, 2005, 85, 221-226.	1.9	14
27	Assessment of the Immune Responses Induced in Cattle after Inoculation of a <i>Mycobacterium bovis</i> Strain Deleted in Two <i>mce2</i> Genes. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	14
28	Polymorphisms of 20 regulatory proteins between <i>Mycobacterium tuberculosis</i> and <i>Mycobacterium bovis</i> . Microbiology and Immunology, 2016, 60, 552-560.	1.4	14
29	Identification and evaluation of new Mycobacterium bovis antigens in the inÂvitro interferon gamma release assay for bovine tuberculosis diagnosis. Tuberculosis, 2015, 95, 795-801.	1.9	12
30	Editorial: Cellular and Molecular Mechanisms of Mycobacterium tuberculosis Virulence. Frontiers in Cellular and Infection Microbiology, 2019, 9, 331.	3.9	11
31	Rv2617c and P36 are virulence factors of pathogenic mycobacteria involved in resistance to oxidative stress. Virulence, 2019, 10, 1026-1033.	4.4	11
32	Single nucleotide polymorphisms may explain the contrasting phenotypes of two variants of a multidrug-resistant Mycobacterium tuberculosis strain. Tuberculosis, 2017, 103, 28-36.	1.9	10
33	<i>ERAP1</i> and <i>PDE8A</i> Are Downregulated in Cattle Protected against Bovine Tuberculosis. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 237-245.	1.0	10
34	Identification of genetic markers forMycobacterium pinnipediithrough genome analysis. FEMS Microbiology Letters, 2005, 248, 147-152.	1.8	9
35	Draft Genome Sequence of Mycobacterium bovis 04-303, a Highly Virulent Strain from Argentina. Genome Announcements, 2013, 1, .	0.8	9
36	Evaluation of Mycobacterium bovis double knockout mce2-phoP as candidate vaccine against bovine tuberculosis. Tuberculosis, 2015, 95, 186-189.	1.9	9

Fabiana Bigi

#	Article	IF	CITATIONS
37	Mycobacterium bovis ESAT-6, CFP-10 and EspC antigens show high conservation among field isolates. Tuberculosis, 2018, 111, 143-146.	1.9	9
38	Metabolic profile of Mycobacterium smegmatis reveals Mce4 proteins are relevant for cell wall lipid homeostasis. Metabolomics, 2016, 12, 1.	3.0	8
39	Development and evaluation of a low cost IgG ELISA test based in RBD protein for COVID-19. Journal of Immunological Methods, 2022, 500, 113182.	1.4	8
40	The subunit vaccine H65Â+ÂCAF01 increased the BCG- protection against Mycobacterium bovis infection in a mouse model of bovine tuberculosis. Research in Veterinary Science, 2021, 136, 595-597.	1.9	7
41	Role of PhoPR in the response to stress of Mycobacterium bovis. Comparative Immunology, Microbiology and Infectious Diseases, 2021, 74, 101593.	1.6	6
42	Analysing nonsynonymous mutations between two Mycobacterium bovis strains with contrasting pathogenic profiles. Veterinary Microbiology, 2019, 239, 108482.	1.9	5
43	Recent advances in non-specific immune memory against bovine tuberculosis. Comparative Immunology, Microbiology and Infectious Diseases, 2021, 75, 101615.	1.6	5
44	Elimination of ESAT-6 and CFP-10 from a candidate vaccine against bovine tuberculosis impaired its protection efficacy in the BALBc mouse model. International Journal of Mycobacteriology, 2020, 9, 417.	0.6	5
45	Assessment ofMycobacterium bovisDeleted inp27-p55Virulence Operon as Candidate Vaccine against Tuberculosis in Animal Models. BioMed Research International, 2014, 2014, 1-6.	1.9	3
46	Identifying Bacterial and Host Factors Involved in the Interaction of Mycobacterium bovis with the Bovine Innate Immune Cells. Frontiers in Immunology, 2021, 12, 674643.	4.8	3
47	A Phenotypic Characterization of Two Isolates of a Multidrug-Resistant Outbreak Strain of <i>Mycobacterium tuberculosis</i> with Opposite Epidemiological Fitness. BioMed Research International, 2020, 2020, 1-9.	1.9	2
48	Production of <i>Mycobacterium bovis</i> Antigens Included in Recombinant Occlusion Bodies of Baculovirus. Journal of Molecular Microbiology and Biotechnology, 2019, 29, 83-90.	1.0	1
49	FasR Regulates Fatty Acid Biosynthesis and Is Essential for Virulence of Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 586285.	3.5	1
50	Semi-stable production of bovine IL-4 and GM-CSF in the mammalian episomal expression system. Journal of Veterinary Research (Poland), 2021, 65, 315-321.	1.0	1
51	H65 fusion protein fails to improve the protection of a rationally attenuated live vaccine candidate against bovine tuberculosis in a mouse model of tuberculosis. International Journal of Mycobacteriology, 2021, 10, 411.	0.6	1
52	Replication and transmission features of two experimental vaccine candidates against bovine tuberculosis subcutaneously administrated in a murine model. Tuberculosis, 2022, 134, 102203.	1.9	0