Amber J Soja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1742821/publications.pdf

Version: 2024-02-01

516215 642321 3,217 23 16 23 citations g-index h-index papers 23 23 23 4862 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 2011, 4, 625-641.	1.3	1,278
2	Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change, 2007, 56, 274-296.	1.6	619
3	Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 2015, 8, 228-234.	5.4	320
4	AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sensing of Environment, 2004, 93, 546-564.	4.6	224
5	Estimating fire emissions and disparities in boreal Siberia (1998–2002). Journal of Geophysical Research, 2004, 109, .	3.3	165
6	Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. Journal of Geophysical Research, 2007, 112, .	3.3	102
7	The use of satelliteâ€measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. Journal of Geophysical Research, 2012, 117, .	3.3	71
8	Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences, 2021, 18, 5053-5083.	1.3	59
9	Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption. Canadian Journal of Forest Research, 2013, 43, 493-506.	0.8	52
10	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	4.7	45
11	Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophysical Research Letters, 2017, 44, 7965-7974.	1.5	41
12	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	9.0	39
13	Progress and Challenges in Quantifying Wildfire Smoke Emissions, Their Properties, Transport, and Atmospheric Impacts. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13005-13025.	1.2	37
14	Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmospheric Chemistry and Physics, 2021, 21, 14427-14469.	1.9	37
15	High Temporal Resolution Satellite Observations of Fire Radiative Power Reveal Link Between Fire Behavior and Aerosol and Gas Emissions. Geophysical Research Letters, 2020, 47, e2020GL090707.	1.5	30
16	Satellite-Derived Mean Fire Return Intervals As Indicators Of Change In Siberia (1995–2002). Mitigation and Adaptation Strategies for Global Change, 2006, 11, 75-96.	1.0	18
17	Radiative forcing due to enhancements in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 2008. Journal of Geophysical Research, 2012, 117, .	3.3	17
18	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & Environmental Science & 2022, 56, 7564-7577.	4.6	15

#	Article	IF	CITATIONS
19	Fine Ashâ€Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
20	Modeled Response of Greenland Snowmelt to the Presence of Biomass Burningâ€Based Absorbing Aerosols in the Atmosphere and Snow. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6122-6141.	1.2	10
21	Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	10
22	Earth science and the integral climatic and socio-economic drivers of change across northern Eurasia: The NEESPI legacy and future direction. Environmental Research Letters, 2018, 13, 040401.	2.2	8
23	An evaluation of empirical and statistically based smoke plume injection height parametrisations used within air quality models. International Journal of Wildland Fire, 2022, 31, 193-211.	1.0	7