Qingrong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1742690/publications.pdf

Version: 2024-02-01

208 papers 10,762 citations

26567 56 h-index 94 g-index

212 all docs 212 docs citations

times ranked

212

9194 citing authors

#	Article	IF	CITATIONS
1	Bioavailability and Delivery of Nutraceuticals Using Nanotechnology. Journal of Food Science, 2010, 75, R50-7.	1.5	648
2	Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry, 2008, 108, 419-424.	4.2	398
3	Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science and Technology, 2016, 55, 48-60.	7.8	390
4	Improving the Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions. Journal of Agricultural and Food Chemistry, 2012, 60, 5373-5379.	2.4	350
5	Kafirin nanoparticles-stabilized Pickering emulsions: Microstructure and rheological behavior. Food Hydrocolloids, 2016, 54, 30-39.	5.6	285
6	Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. Journal of Functional Foods, 2014, 7, 112-128.	1.6	261
7	Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry, 2010, 119, 669-674.	4.2	258
8	Assembly of Protein–Polysaccharide Complexes for Delivery of Bioactive Ingredients: A Perspective Paper. Journal of Agricultural and Food Chemistry, 2019, 67, 1344-1352.	2.4	200
9	Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, 2012, 88, 838-846.	5.1	196
10	Assembly of kafirin/carboxymethyl chitosan nanoparticles to enhance the cellular uptake of curcumin. Food Hydrocolloids, 2015, 51, 166-175.	5.6	178
11	Kafirin Nanoparticle-Stabilized Pickering Emulsions as Oral Delivery Vehicles: Physicochemical Stability and in Vitro Digestion Profile. Journal of Agricultural and Food Chemistry, 2015, 63, 10263-10270.	2.4	172
12	Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 2018, 107, 1800-1810.	3.6	152
13	Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chemistry, 2012, 131, 48-54.	4.2	146
14	Nanochemoprevention by encapsulation of (â^')-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chemical Communications, 2012, 48, 2421.	2.2	135
15	Edible Pickering emulsions stabilized by ovotransferrin–gum arabic particles. Food Hydrocolloids, 2019, 89, 590-601.	5.6	134
16	Composition and Rheological Properties of Î ² -Lactoglobulin/Pectin Coacervates:Â Effects of Salt Concentration and Initial Protein/Polysaccharide Ratio. Biomacromolecules, 2007, 8, 992-997.	2.6	133
17	Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review. International Journal of Pharmaceutics, 2020, 578, 119127.	2.6	124
18	Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrication, microstructure, stability and inÂvitro digestion profile. Food Hydrocolloids, 2017, 62, 230-238.	5.6	121

#	Article	IF	CITATIONS
19	Food-grade Pickering emulsions stabilized by ovotransferrin fibrils. Food Hydrocolloids, 2019, 94, 592-602.	5 . 6	114
20	Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports, 2020, 10, 3533.	1.6	113
21	Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydrate Polymers, 2012, 89, 362-370.	5.1	111
22	Bioactive Peptides/Chitosan Nanoparticles Enhance Cellular Antioxidant Activity of (â^')-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2013, 61, 875-881.	2.4	108
23	Fabrication of milled cellulose particles-stabilized Pickering emulsions. Food Hydrocolloids, 2018, 77, 427-435.	5 . 6	104
24	Pickering emulsions stabilized by media-milled starch particles. Food Research International, 2018, 105, 140-149.	2.9	104
25	Understanding the Dissolution of \hat{l}_{\pm} -Zein in Aqueous Ethanol and Acetic Acid Solutions. Journal of Physical Chemistry B, 2012, 116, 12057-12064.	1.2	103
26	Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application. International Journal of Biological Macromolecules, 2020, 148, 1280-1289.	3.6	103
27	Pectin extracted from persimmon peel: A physicochemical characterization and emulsifying properties evaluation. Food Hydrocolloids, 2020, 101, 105561.	5 . 6	101
28	Prevention of Obesity and Type 2 Diabetes with Aged Citrus Peel (<i>Chenpi</i>) Extract. Journal of Agricultural and Food Chemistry, 2016, 64, 2053-2061.	2.4	98
29	Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chemistry, 2016, 203, 117-123.	4.2	98
30	Effects of pectin polydispersity on zein/pectin composite nanoparticles (ZAPs) as high internal-phase Pickering emulsion stabilizers. Carbohydrate Polymers, 2019, 219, 77-86.	5.1	98
31	Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. Journal of Functional Foods, 2014, 7, 3-25.	1.6	94
32	Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocolloids, 2019, 93, 68-77.	5.6	89
33	Enhancing the Viability of <i>Lactobacillus plantarum</i> as Probiotics through Encapsulation with High Internal Phase Emulsions Stabilized with Whey Protein Isolate Microgels. Journal of Agricultural and Food Chemistry, 2018, 66, 12335-12343.	2.4	87
34	Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin. Food Hydrocolloids, 2019, 94, 561-573.	5 . 6	85
35	Capsaicinâ€"the major bioactive ingredient of chili peppers: bio-efficacy and delivery systems. Food and Function, 2020, 11, 2848-2860.	2.1	85
36	Double emulsion followed by complex coacervation as a promising method for protection of black raspberry anthocyanins. Food Hydrocolloids, 2018, 77, 803-816.	5 . 6	84

#	Article	IF	Citations
37	Antibody-Conjugated CdTe Quantum Dots for <i>Escherichia coli</i> Detection. Journal of Physical Chemistry C, 2008, 112, 4818-4824.	1.5	80
38	Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan. Journal of Agricultural and Food Chemistry, 2017, 65, 1401-1409.	2.4	78
39	Extraction, bioavailability, and bioefficacy of capsaicinoids. Journal of Food and Drug Analysis, 2017, 25, 27-36.	0.9	77
40	High internal phase pickering emulsions stabilized by pea protein isolate-high methoxyl pectin-EGCG complex: Interfacial properties and microstructure. Food Chemistry, 2021, 350, 129251.	4.2	77
41	Encapsulation of Epigallocatechin-3-gallate (EGCG) Using Oil-in-Water (O/W) Submicrometer Emulsions Stabilized by \hat{l}^1 -Carrageenan and \hat{l}^2 -Lactoglobulin. Journal of Agricultural and Food Chemistry, 2010, 58, 10373-10381.	2.4	76
42	Assembly of iron-bound ovotransferrin amyloid fibrils. Food Hydrocolloids, 2019, 89, 579-589.	5.6	74
43	Assembly of Pickering emulsions using milled starch particles with different amylose/amylopectin ratios. Food Hydrocolloids, 2018, 84, 47-57.	5.6	72
44	Investigation of Adsorption Behavior of (â^')-Epigallocatechin Gallate on Bovine Serum Albumin Surface Using Quartz Crystal Microbalance with Dissipation Monitoring. Journal of Agricultural and Food Chemistry, 2007, 55, 4987-4992.	2.4	71
45	The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Research International, 2018, 111, 351-360.	2.9	71
46	Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation. Journal of Agricultural and Food Chemistry, 2016, 64, 4735-4741.	2.4	70
47	Improved controlled flavor formation during heat-treatment with a stable Maillard reaction intermediate derived from xylose-phenylalanine. Food Chemistry, 2019, 271, 47-53.	4.2	69
48	Maillard-Reacted Whey Protein Isolates Enhance Thermal Stability of Anthocyanins over a Wide pH Range. Journal of Agricultural and Food Chemistry, 2018, 66, 9556-9564.	2.4	67
49	Heteroprotein complex formation of ovotransferrin and lysozyme: Fabrication of food-grade particles to stabilize Pickering emulsions. Food Hydrocolloids, 2019, 96, 190-200.	5.6	64
50	Identification of dihydro- \hat{l}^2 -ionone as a key aroma compound in addition to C8 ketones and alcohols in Volvariella volvacea mushroom. Food Chemistry, 2019, 293, 333-339.	4.2	63
51	Using in Vitro and in Vivo Models To Evaluate the Oral Bioavailability of Nutraceuticals. Journal of Agricultural and Food Chemistry, 2015, 63, 1332-1338.	2.4	62
52	Accelerating aroma formation of raw soy sauce using low intensity sonication. Food Chemistry, 2020, 329, 127118.	4.2	60
53	Metagenomics Analysis of Gut Microbiota in a High Fat Diet–Induced Obesity Mouse Model Fed with (â^')â€Epigallocatechin 3â€ <i>O</i> àâ€ <i>O</i> àâ€Methyl) Gallate (EGCG3″Me). Molecular Nutrition and Fo Research, 2018, 62, e1800274.	oad5	59
54	Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: a review. Food and Function, 2018, 9, 4569-4581.	2.1	59

#	Article	IF	CITATIONS
55	Ovotransferrin fibril–stabilized Pickering emulsions improve protection and bioaccessibility of curcumin. Food Research International, 2019, 125, 108602.	2.9	59
56	Antioxidative pectin from hawthorn wine pomace stabilizes and protects Pickering emulsions via forming zein-pectin gel-like shell structure. International Journal of Biological Macromolecules, 2020, 151, 193-203.	3.6	59
57	Aged citrus peel (<i>chenpi</i>) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food and Function, 2020, 11, 2667-2678.	2.1	59
58	Scaling Behaviors of α-Zein in Acetic Acid Solutions. Journal of Physical Chemistry B, 2011, 115, 9695-9702.	1,2	58
59	Effects on longevity extension and mechanism of action of carnosic acid in <i>Caenorhabditis elegans</i> . Food and Function, 2019, 10, 1398-1410.	2.1	58
60	Edible Nanoencapsulation Vehicles for Oral Delivery of Phytochemicals: A Perspective Paper. Journal of Agricultural and Food Chemistry, 2017, 65, 6727-6735.	2.4	57
61	In vitro and in vivo anti-cancer activity of tangeretin against colorectal cancer was enhanced by emulsion-based delivery system. Journal of Functional Foods, 2015, 15, 264-273.	1.6	54
62	Enhancing Activities of Salt-Tolerant Proteases Secreted by <i>Aspergillus oryzae</i> Using Atmospheric and Room-Temperature Plasma Mutagenesis. Journal of Agricultural and Food Chemistry, 2020, 68, 2757-2764.	2.4	54
63	A Smart Drug Delivery System Based on Biodegradable Chitosan/Poly(allylamine hydrochloride) Blend Films. Pharmaceutics, 2020, 12, 131.	2.0	53
64	Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum. Journal of Food Science and Technology, 2017, 54, 2306-2315.	1.4	52
65	Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Radical Biology and Medicine, 2016, 94, 1-16.	1.3	51
66	Curcumin-loaded Pickering emulsion stabilized by insoluble complexes involving ovotransferrin–gallic acid conjugates and carboxymethyldextran. Food and Function, 2019, 10, 4911-4923.	2.1	51
67	Prevention of Obesity and Hyperlipidemia by Heptamethoxyflavone in High-fat Diet-induced Rats. Journal of Agricultural and Food Chemistry, 2019, 67, 2476-2489.	2.4	51
68	The biological fate and bioefficacy of citrus flavonoids: bioavailability, biotransformation, and delivery systems. Food and Function, 2021, 12, 3307-3323.	2.1	51
69	Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models. Molecular Pharmaceutics, 2015, 12, 2229-2236.	2.3	50
70	Glycosylation of bovine serum albumin via Maillard reaction prevents epigallocatechin-3-gallate-induced protein aggregation. Food Hydrocolloids, 2015, 43, 228-235.	5.6	49
71	Hepatic Lipidomics Analysis Reveals the Antiobesity and Cholesterol-Lowering Effects of Tangeretin in High-Fat Diet-Fed Rats. Journal of Agricultural and Food Chemistry, 2020, 68, 6142-6153.	2.4	48
72	Pickering emulsions immobilized within hydrogel matrix with enhanced resistance against harsh processing conditions and sequential digestion. Food Hydrocolloids, 2017, 62, 35-42.	5.6	47

#	Article	IF	CITATIONS
73	Investigation of ovotransferrin conformation and its complexation with sugar beet pectin. Food Hydrocolloids, 2019, 87, 448-458.	5.6	47
74	Biopolymer based nano-delivery systems for enhancing bioavailability of nutraceuticals. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1190-1203.	2.0	46
75	Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. International Journal of Biological Macromolecules, 2020, 152, 223-233.	3.6	46
76	Microstructure and Molecular Interaction in Glycerol Plasticized Chitosan/Poly(vinyl alcohol) Blending Films. Macromolecular Chemistry and Physics, 2009, 210, 832-839.	1.1	45
77	Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions. International Journal of Biological Macromolecules, 2019, 139, 917-924.	3.6	45
78	Development of high internal phase Pickering emulsions stabilised by ovotransferrin–gum arabic particles as curcumin delivery vehicles. International Journal of Food Science and Technology, 2020, 55, 1891-1899.	1.3	43
79	Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol). International Journal of Biological Macromolecules, 2014, 65, 81-88.	3.6	42
80	Anti-obesity effects of capsaicin and the underlying mechanisms: a review. Food and Function, 2020, 11 , 7356-7370.	2.1	42
81	Synthesis of photoacid crosslinkable hydrogels for the fabrication of soft, biomimetic microlens arrays. Journal of Materials Chemistry, 2005, 15, 4200.	6.7	41
82	Effects of pH on the Interactions and Conformation of Bovine Serum Albumin:  Comparison between Chemical Force Microscopy and Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2008, 112, 3797-3806.	1.2	41
83	Synthesis, Characterization, and Evaluation of Genistein-Loaded Zein/Carboxymethyl Chitosan Nanoparticles with Improved Water Dispersibility, Enhanced Antioxidant Activity, and Controlled Release Property. Foods, 2020, 9, 1604.	1.9	39
84	Comparative flavor profile analysis of four different varieties of Boletus mushrooms by instrumental and sensory techniques. Food Research International, 2020, 136, 109485.	2.9	39
85	Probing Conformational Change of Bovine Serum Albumin–Dextran Conjugates under Controlled Dry Heating. Journal of Agricultural and Food Chemistry, 2015, 63, 4080-4086.	2.4	38
86	Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir. Journal of Agricultural and Food Chemistry, 2016, 64, 3234-3242.	2.4	38
87	Exploiting the robust network structure of zein/low-acyl gellan gum nanocomplexes to create Pickering emulsion gels with favorable properties. Food Chemistry, 2021, 349, 129112.	4.2	38
88	Kafirin Protein Based Electrospun Fibers with Tunable Mechanical Property, Wettability, and Release Profile. Journal of Agricultural and Food Chemistry, 2016, 64, 3226-3233.	2.4	37
89	Synergistic Effect of a Thermal Reaction and Vacuum Dehydration on Improving Xylose–Phenylalanine Conversion to <i>N</i> -(1-Deoxy- <scp>d</scp> -xylulos-1-yl)-phenylalanine during an Aqueous Maillard Reaction. Journal of Agricultural and Food Chemistry, 2018, 66, 10077-10085.	2.4	37
90	Zein/Pectin Nanoparticle-Stabilized Sesame Oil Pickering Emulsions: Sustainable Bioactive Carriers and Healthy Alternatives to Sesame Paste. Food and Bioprocess Technology, 2019, 12, 1982-1992.	2.6	37

#	Article	IF	CITATIONS
91	Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Applied Nanoscience (Switzerland), 2011, 1, 137-142.	1.6	36
92	Modification of ovotransferrin by Maillard reaction: Consequences for structure, fibrillation and emulsifying property of fibrils. Food Hydrocolloids, 2019, 97, 105186.	5 . 6	36
93	Enhancing Stability and Oral Bioavailability of Polyphenols Using Nanoemulsions. ACS Symposium Series, 2009, , 198-212.	0.5	34
94	Evaluation of Oral Bioaccessibility of Aged Citrus Peel Extracts Encapsulated in Different Lipid-Based Systems: A Comparison Study Using Different in Vitro Digestion Models. Journal of Agricultural and Food Chemistry, 2020, 68, 97-105.	2.4	34
95	Glycopolymers/PEI complexes as serum-tolerant vectors for enhanced gene delivery to hepatocytes. Carbohydrate Polymers, 2019, 205, 167-175.	5.1	32
96	Polymer-coated CoFe2O4 nanoassemblies as biocompatible magnetic nanocarriers for anticancer drug delivery. Journal of Materials Science, 2017, 52, 9282-9293.	1.7	31
97	Structural elucidation, antioxidant and immunomodulatory activities of a novel heteropolysaccharide from cultured Paecilomyces cicadae (Miquel.) Samson. Carbohydrate Polymers, 2019, 216, 270-281.	5.1	30
98	Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO's gastrointestinal model. Food and Function, 2019, 10, 2583-2594.	2.1	30
99	Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles. Food and Function, 2020, 11, 1478-1488.	2.1	30
100	Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high-fat diet. Food and Function, 2021, 12, 3516-3526.	2.1	30
101	5-Demethylnobiletin and 5-Acetoxy-6,7,8,3′,4′-pentamethoxyflavone Suppress Lipid Accumulation by Activating the LKB1-AMPK Pathway in 3T3-L1 Preadipocytes and High Fat Diet-Fed C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 3196-3205.	2.4	29
102	Chemistry and Health Effect of Tea Polyphenol (â^')-Epigallocatechin 3- <i>O</i> -(3- <i>O</i> -Methyl)gallate. Journal of Agricultural and Food Chemistry, 2019, 67, 5374-5378.	2.4	29
103	Influence of Protein Self-Association on Complex Coacervation with Polysaccharide: A Monte Carlo Study. Journal of Physical Chemistry B, 2013, 117, 2615-2624.	1.2	28
104	Small-Angle X-ray Scattering Study of Protein Complexes with Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2017, 65, 656-665.	2.4	28
105	Modulation of Formation, Physicochemical Properties, and Digestion of Ovotransferrin Nanofibrils with Covalent or Non-Covalent Bound Gallic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 9907-9915.	2.4	27
106	Monte Carlo Study of Polyelectrolyte Adsorption on Mixed Lipid Membrane. Journal of Physical Chemistry B, 2013, 117, 989-1002.	1.2	26
107	Soy Sauce Residue Oil Extracted by a Novel Continuous Phase Transition Extraction under Low Temperature and Its Refining Process. Journal of Agricultural and Food Chemistry, 2014, 62, 3230-3235.	2.4	26
108	Multilevel structural responses of \hat{l}^2 -conglycinin and glycinin under acidic or alkaline heat treatment. Food Research International, 2016, 89, 540-548.	2.9	26

#	Article	IF	CITATIONS
109	Comparative Analyses of Bioavailability, Biotransformation, and Excretion of Nobiletin in Lean and Obese Rats. Journal of Agricultural and Food Chemistry, 2020, 68, 10709-10718.	2.4	26
110	Assembly of zein–polyphenol conjugates via carbodiimide method: Evaluation of physicochemical and functional properties. LWT - Food Science and Technology, 2022, 154, 112708.	2.5	26
111	Influence of Commercial Saturated Monoglyceride, Mono-/Diglycerides Mixtures, Vegetable Oil, Stirring Speed, and Temperature on the Physical Properties of Organogels. International Journal of Food Science, 2014, 2014, 1-8.	0.9	25
112	Improved bioaccessibility of polymethoxyflavones loaded into high internal phase emulsions stabilized by biopolymeric complexes: A dynamic digestion study via TNO's gastrointestinal model. Current Research in Food Science, 2020, 2, 11-19.	2.7	25
113	Monitoring the Binding Processes of Black Tea Thearubigin to the Bovine Serum Albumin Surface Using Quartz Crystal Microbalance with Dissipation Monitoring. Journal of Agricultural and Food Chemistry, 2007, 55, 10110-10116.	2.4	24
114	Aged citrus peel (chenpi) extract reduces lipogenesis in differentiating 3T3-L1 adipocytes. Journal of Functional Foods, 2017, 34, 297-303.	1.6	23
115	The chemopreventive effect of 5-demethylnobiletin, a unique citrus flavonoid, on colitis-driven colorectal carcinogenesis in mice is associated with its colonic metabolites. Food and Function, 2020, 11, 4940-4952.	2.1	23
116	Design of high-loading and high-stability viscoelastic emulsions for polymethoxyflavones. Food Research International, 2013, 54, 633-640.	2.9	22
117	Understanding the inhibitory mechanism of tea polyphenols against tyrosinase using fluorescence spectroscopy, cyclic voltammetry, oximetry, and molecular simulations. RSC Advances, 2018, 8, 8310-8318.	1.7	22
118	In vitro digestion and stability under environmental stresses of ovotransferrin nanofibrils. Food Hydrocolloids, 2020, 99, 105343.	5.6	22
119	Black cardamom essential oil prevents Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748 biofilm formation through inhibition of quorum sensing. Journal of Food Science and Technology, 2021, 58, 3183-3191.	1.4	22
120	Assessment of Oral Bioavailability and Biotransformation of Emulsified Nobiletin Using <i>In Vitro</i> and <i>In Vivo</i> Models. Journal of Agricultural and Food Chemistry, 2020, 68, 11412-11420.	2.4	22
121	Citrus polymethoxyflavones as regulators of metabolic homoeostasis: Recent advances for possible mechanisms. Trends in Food Science and Technology, 2021, 110, 743-753.	7.8	22
122	Advances in Nanodelivery of Green Tea Catechins to Enhance the Anticancer Activity. Molecules, 2021, 26, 3301.	1.7	22
123	In Vivo Screening and Antidiabetic Potential of Polyphenol Extracts from Guava Pulp, Seeds and Leaves. Animals, 2020, 10, 1714.	1.0	21
124	Anti-biofilm Potential of Elletaria cardamomum Essential Oil Against Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748. Frontiers in Microbiology, 2021, 12, 620227.	1.5	21
125	Preparation of pickering emulsion stabilised by Zein/Grape seed proanthocyanidins binary composite. International Journal of Food Science and Technology, 2021, 56, 3763-3772.	1.3	21
126	Safety evaluation of tangeretin and the effect of using emulsion-based delivery system: Oral acute and 28-day sub-acute toxicity study using mice. Food Research International, 2015, 74, 140-150.	2.9	20

#	Article	IF	CITATIONS
127	The enhanced anti-obesity effect and reduced gastric mucosa irritation of capsaicin-loaded nanoemulsions. Food and Function, 2017, 8, 1803-1809.	2.1	20
128	Capsaicin Ameliorates the Redox Imbalance and Glucose Metabolism Disorder in an Insulin-Resistance Model via Circadian Clock-Related Mechanisms. Journal of Agricultural and Food Chemistry, 2019, 67, 10089-10096.	2.4	20
129	Niclosamide piperazine prevents high-fat diet-induced obesity and diabetic symptoms in mice. Eating and Weight Disorders, 2019, 24, 91-96.	1.2	20
130	Effect of charge density of polysaccharide on self-assembly behaviors of ovalbumin and sodium alginate. International Journal of Biological Macromolecules, 2020, 154, 1245-1254.	3 . 6	20
131	Nano/Submicrometer Milled Red Rice Particles-Stabilized Pickering Emulsions and Their Antioxidative Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 292-300.	2.4	19
132	Gliadin/amidated pectin core–shell nanoparticles for stabilisation of Pickering emulsion. International Journal of Food Science and Technology, 2020, 55, 3278-3288.	1.3	19
133	A review on the bioavailability, bio-efficacies and novel delivery systems for piperine. Food and Function, 2021, 12, 8867-8881.	2.1	19
134	Nanoencapsulation of functional food ingredients. Advances in Food and Nutrition Research, 2019, 88, 129-165.	1.5	18
135	Characterization and Absorption Kinetics of a Novel Multifunctional Nanoliposome Stabilized by Sea Cucumber Saponins Instead of Cholesterol. Journal of Agricultural and Food Chemistry, 2020, 68, 642-651.	2.4	18
136	Controlled-release behavior of ciprofloxacin from a biocompatible polymeric system based on sodium alginate/poly(ethylene glycol) mono methyl ether. International Journal of Biological Macromolecules, 2020, 165, 1047-1054.	3 . 6	18
137	Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation. AIP Advances, 2013, 3, .	0.6	17
138	Oenothein B boosts antioxidant capacity and supports metabolic pathways that regulate antioxidant defense in <i>Caenorhabditis elegans</i> Food and Function, 2020, 11, 9157-9167.	2.1	17
139	Isolation, purification and identification of immunologically active peptides from Hericium erinaceus. Food and Chemical Toxicology, 2021, 151, 112111.	1.8	17
140	Effects of gelation on the stability, tribological properties and time-delayed release profile of double emulsions. Food Hydrocolloids, 2022, 131, 107753.	5.6	17
141	Biomimetic glycopolymers tethered gold nanoparticles: Preparation, self-assembly and lectin recognition properties. Colloids and Surfaces B: Biointerfaces, 2015, 126, 367-373.	2.5	16
142	Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study. Journal of Physical Chemistry B, 2015, 119, 6041-6049.	1.2	15
143	Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions: role of fatty acid complexation and heat treatment. Food and Function, 2019, 10, 5969-5980.	2.1	15
144	Fatty acids, volatile compounds and microbial quality preservation with an oregano nanoemulsion to extend the shelf life of hake (<i>Merluccius hubbsi</i>) burgers. International Journal of Food Science and Technology, 2019, 54, 149-160.	1.3	15

#	Article	IF	CITATIONS
145	Method development and validation for analysis of phenolic compounds in fatty complex matrices using enhanced matrix removal (EMR) lipid cleanup and UHPLC-QqQ-MS/MS. Food Chemistry, 2022, 373, 131096.	4.2	15
146	Application of Monte Carlo simulation in addressing key issues of complex coacervation formed by polyelectrolytes and oppositely charged colloids. Advances in Colloid and Interface Science, 2017, 239, 31-45.	7.0	14
147	Improving the bioaccessibility and bioavailability of carnosic acid using a lecithin-based nanoemulsion: complementary <i>in vitro</i> and <i>in vivo</i> studies. Food and Function, 2020, 11, 8141-8149.	2.1	14
148	Development of wet media milled purple sweet potato particle-stabilized pickering emulsions: The synergistic role of bioactives, starch and cellulose. LWT - Food Science and Technology, 2022, 155, 112964.	2. 5	14
149	Anti-Melanogenic Mechanism of Tetrahydrocurcumin and Enhancing Its Topical Delivery Efficacy Using a Lecithin-Based Nanoemulsion. Pharmaceutics, 2021, 13, 1185.	2.0	13
150	Development of organogel-based emulsions to enhance the loading and bioaccessibility of 5-demethylnobiletin. Food Research International, 2021, 148, 110592.	2.9	13
151	Quantum dots encapsulated glycopolymer vesicles: Synthesis, lectin recognition and photoluminescent properties. Colloids and Surfaces B: Biointerfaces, 2015, 127, 130-136.	2.5	12
152	Engineering miscellaneous particles from media-milled defatted walnut flour as novel food-grade Pickering stabilizers. Food Research International, 2021, 147, 110554.	2.9	12
153	Capsaicin Attenuates Oleic Acid-Induced Lipid Accumulation via the Regulation of Circadian Clock Genes in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2022, 70, 794-803.	2.4	12
154	Ovotransferrin nanofibril formation in the presence of glycerol or sorbitol. Food Chemistry, 2020, 305, 125453.	4.2	11
155	Effect of linear charge density of polysaccharides on interactions with α-amylase: Self-Assembling behavior and application in enzyme immobilization. Food Chemistry, 2020, 331, 127320.	4.2	11
156	Improving <i>in vitro </i> bioaccessibility and bioactivity of carnosic acid using a lecithin-based nanoemulsion system. Food and Function, 2021, 12, 1558-1568.	2.1	11
157	Physicochemical and emulsifying properties of whey protein isolate (WPI)â€polydextrose conjugates prepared ⟨i>via⟨ i> Maillard reaction. International Journal of Food Science and Technology, 2021, 56, 3784-3794.	1.3	11
158	Structure, assembly and application of novel peanut oil body protein extracts nanoparticles. Food Chemistry, 2022, 367, 130678.	4.2	11
159	Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Critical Reviews in Food Science and Nutrition, 2023, 63, 3634-3652.	5.4	11
160	Bio-aerogels: Fabrication, properties and food applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 6687-6709.	5.4	11
161	Effects of the Distribution Site of Crystallizable Emulsifiers on the Gastrointestinal Digestion Behavior of Double Emulsions. Journal of Agricultural and Food Chemistry, 2022, 70, 5115-5125.	2.4	11
162	Biopolymer-stabilized emulsions on the basis of interactions between \hat{l}^2 -lactoglobulin and \hat{l}^1 -carrageenan. Frontiers of Chemical Engineering in China, 2009, 3, 399-406.	0.6	10

#	Article	IF	Citations
163	Physical Gelation of Polypeptide–Polyelectrolyte–Polypeptide (ABA) Copolymer in Solution. Macromolecules, 2012, 45, 6201-6209.	2.2	10
164	Quality differences of hamburger patties incorporated with encapsulated \hat{l}^2 carotene both as an additive and edible coating. Journal of Food Processing and Preservation, 2018, 42, e13353.	0.9	10
165	Formation of Nanocomplexes between Carboxymethyl Inulin and Bovine Serum Albumin via pH-Induced Electrostatic Interaction. Molecules, 2019, 24, 3056.	1.7	10
166	Healthy lifespan extension mediated by oenothein B isolated from <i>Eucalyptus grandis</i> \tilde{A} — <i>Eucalyptus urophylla GL9</i> in <i>Caenorhabditis elegans</i> Food and Function, 2020, 11, 2439-2450.	2.1	10
167	Antiâ€obesity effects of Chenpi: an artificial gastrointestinal system study. Microbial Biotechnology, 2022, 15, 874-885.	2.0	10
168	Covalent modification of zein with polyphenols: A feasible strategy to improve antioxidant activity and solubility. Journal of Food Science, 2022, 87, 2965-2979.	1.5	10
169	Design and preparation of pH-responsive curdlan hydrogels as a novel protein delivery vector. Chinese Journal of Polymer Science (English Edition), 2016, 34, 280-287.	2.0	9
170	Probing the Role of Catalytic Triad on the Cleavage between Intramolecular Chaperone and NK Mature Peptide. Journal of Agricultural and Food Chemistry, 2021, 69, 2348-2353.	2.4	9
171	Replica Exchange Monte Carlo Simulation of Human Serum Albumin–Catechin Complexes. Journal of Physical Chemistry B, 2014, 118, 10362-10372.	1.2	8
172	Effect of polyelectrolyte adsorption on lateral distribution and dynamics of anionic lipids: a Monte Carlo study of a coarse-grain model. European Biophysics Journal, 2014, 43, 377-391.	1.2	8
173	Biotransformation and Quantification of Sinensetin and Its Metabolites in Plasma, Urine, and Feces of Rats. Journal of Agricultural and Food Chemistry, 2021, 69, 14143-14150.	2.4	8
174	Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers. Journal of Physical Chemistry B, 2017, 121, 984-994.	1.2	7
175	Adsorption of a hydrophobic cationic polypeptide onto acidic lipid membrane. Polymer, 2017, 122, 125-138.	1.8	7
176	Evaluation of an Industrial Soybean Byproduct for the Potential Development of a Probiotic Animal Feed Additive with Bacillus Species. Probiotics and Antimicrobial Proteins, 2020, 12, 1173-1178.	1.9	7
177	Associations between caseinophosphopeptides and theaflavin-3,3 $\hat{a}\in^2$ -digallate and their impact on cellular antioxidant activity. Food and Function, 2021, 12, 7390-7401.	2.1	7
178	Development and characterization of sodium alginate/poly(sodium 4-styrenesulfonate) composite films for release behavior of ciprofloxacin hydrogen chloride monohydrate. Polymers and Polymer Composites, 2021, 29, S143-S153.	1.0	7
179	Structural characteristics and enhanced biological activities of partially degraded arabinogalactan from larch sawdust. International Journal of Biological Macromolecules, 2021, 171, 550-559.	3.6	7
180	Occurrence, Formation, Stability, and Interaction of 4-Hydroxy-2,5-dimethyl-3(2H)-furanone. ACS Food Science & Technology, 2021, 1, 292-303.	1.3	7

#	Article	IF	Citations
181	Evaluation of the bioaccessibility of tetrahydrocurcumin-hyaluronic acid conjugate using in vitro and ex vivo models. International Journal of Biological Macromolecules, 2021, 182, 1322-1330.	3.6	7
182	Comparison of the Digestion and Absorption Characteristics of Docosahexaenoic Acid-Acylated Astaxanthin Monoester and Diester in Mice. Journal of Ocean University of China, 2021, 20, 973-984.	0.6	7
183	Fabrication and in vitro digestion behavior of Pickering emulsions stabilized by chitosan-caseinophosphopeptides nanocomplexes. International Journal of Biological Macromolecules, 2021, 193, 619-628.	3.6	7
184	Alteration of gut microbiota in highâ€fat dietâ€induced obese mice using carnosic acid from rosemary. Food Science and Nutrition, 2022, 10, 2325-2332.	1.5	7
185	Compositional redistribution and dynamic heterogeneity in mixed lipid membrane induced by polyelectrolyte adsorption: Effects of chain rigidity. European Physical Journal E, 2014, 37, 27.	0.7	6
186	Self-nanoemulsifying system (SNES) enhanced oral bioavailability of boswellic acids. Journal of Functional Foods, 2018, 40, 520-526.	1.6	6
187	Enhancing Intestinal Permeability of Theaflavin-3,3′-digallate by Chitosan–Caseinophosphopeptides Nanocomplexes. Journal of Agricultural and Food Chemistry, 2022, 70, 2029-2041.	2.4	6
188	Modulation of the spatial distribution of crystallizable emulsifiers in Pickering double emulsions. Journal of Colloid and Interface Science, 2022, 619, 28-41.	5.0	6
189	Advanced insight into the O/W emulsions stabilising capacity of waterâ€soluble protein from <i>Tenebrio molitor</i> . International Journal of Food Science and Technology, 2022, 57, 6286-6297.	1.3	6
190	Mechanical properties and crystallization behaviors of oriented electrospun nanofibers of zein/poly(εâ€caprolactone) composites. Polymer Composites, 2018, 39, 2151-2159.	2.3	5
191	Improved Storage Properties and Cellular Uptake of Casticin-Loaded Nanoemulsions Stabilized by Whey Protein-Lactose Conjugate. Foods, 2021, 10, 1640.	1.9	5
192	Absorption, Pharmacokinetics, Tissue Distribution, and Excretion Profiles of Sea Cucumber-Derived Sulfated Sterols in Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 480-487.	2.4	5
193	Molecular characteristics of kappa-selenocarrageenan and application in green synthesis of silver nanoparticles. International Journal of Biological Macromolecules, 2019, 141, 529-537.	3.6	4
194	Effect of Nanoreduction on Functional and Structural Properties of Resistant-Starch from Lotus Stem. ACS Food Science & Technology, 2021, 1, 1444-1455.	1.3	4
195	Enzymatic Synthesis of Diacylglycerol-Enriched Oil by Two-Step Vacuum-Mediated Conversion of Fatty Acid Ethyl Ester and Fatty Acid From Soy Sauce By-Product Oil as Lipid-Lowering Functional Oil. Frontiers in Nutrition, 2022, 9, 884829.	1.6	4
196	Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains. Polymers, 2016, 8, 235.	2.0	3
197	Text mining datasets of β-hydroxybutyrate (BHB) supplement products' consumer online reviews. Data in Brief, 2020, 30, 105385.	0.5	3
198	Making Concentrated Pterostilbene Highly Bioavailable in Pressure Processed Phospholipid Nanoemulsion. Processes, 2021, 9, 294.	1.3	3

#	Article	IF	CITATIONS
199	Crystallization of polymethoxyflavones in high internal phase emulsions stabilized using biopolymeric complexes: Implications for microstructure and in vitro digestion properties. Food Bioscience, 2021, 40, 100876.	2.0	3
200	Fermented Duckweed as a Potential Feed Additive with Poultry Beneficial Bacilli Probiotics. Probiotics and Antimicrobial Proteins, 2021, 13, 1425-1432.	1.9	3
201	Physicochemical, Structural Properties and In Vitro Digestibility of A―and Bâ€ŧype Granules Isolated from Green Wheat and Mature Wheat Starch. Starch/Staerke, 2021, 73, 2100065.	1.1	2
202	Mutation induced structural variation in membrane proteins. Chemical Research in Chinese Universities, 2013, 29, 1016-1021.	1.3	1
203	Edible Delivery Systems Based on Favorable Interactions for Encapsulation ofÂPhytochemicals. , 2019, , 727-732.		1
204	AFM imaging of extracellular ice nucleators. Journal of Food Science, 2020, 85, 3355-3362.	1.5	1
205	Docosahexaenoic Acid-Acylated Astaxanthin Esters Exhibit Superior Renal Protective Effect to Recombination of Astaxanthin with DHA via Alleviating Oxidative Stress Coupled with Apoptosis in Vancomycin-Treated Mice with Nephrotoxicity. Marine Drugs, 2021, 19, 499.	2.2	1
206	Identification and Quantification of Both Methylation and Demethylation Biotransformation Metabolites of 5-Demethylsinensetin in Rats. Journal of Agricultural and Food Chemistry, 2022, 70, 3162-3171.	2.4	1
207	Assessment of Digestion, Absorption, and Metabolism of Nanoencapsulated Phytochemicals Using <i>In Vitro</i> and <i>In Vivo</i> Models: A Perspective Paper. Journal of Agricultural and Food Chemistry, 2022, 70, 4548-4555.	2.4	1
208	Demethylnobiletin and its major metabolites: Efficient preparation and mechanism of their anti-proliferation activity in HepG2 cells. Food Science and Human Wellness, 2022, 11, 1191-1200.	2.2	1