Swen Hoelder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1742261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Molecular Oncology, 2012, 6, 155-176.	4.6	447
2	Structure-Based Design of Orally Bioavailable 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>]pyridine Inhibitors of Mitotic Kinase Monopolar Spindle 1 (MPS1). Journal of Medicinal Chemistry, 2013, 56, 10045-10065.	6.4	72
3	Two-Step Synthesis of Aza- and Diazaindoles from Chloroamino-N-heterocycles Using Ethoxyvinylborolane. Journal of Organic Chemistry, 2010, 75, 11-15.	3.2	62
4	Design of Potent and Selective Hybrid Inhibitors of the Mitotic Kinase Nek2: Structure–Activity Relationship, Structural Biology, and Cellular Activity. Journal of Medicinal Chemistry, 2012, 55, 3228-3241.	6.4	59
5	Achieving <i>In Vivo</i> Target Depletion through the Discovery and Optimization of Benzimidazolone BCL6 Degraders. Journal of Medicinal Chemistry, 2020, 63, 4047-4068.	6.4	47
6	Designing Dual Inhibitors of Anaplastic Lymphoma Kinase (ALK) and Bromodomain-4 (BRD4) by Tuning Kinase Selectivity. Journal of Medicinal Chemistry, 2019, 62, 2618-2637.	6.4	45
7	Rapid Discovery of Pyrido[3,4- <i>d</i>]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach. Journal of Medicinal Chemistry, 2016, 59, 3671-3688.	6.4	29
8	Novel Quinazolinone Inhibitors of ALK2 Flip between Alternate Binding Modes: Structure–Activity Relationship, Structural Characterization, Kinase Profiling, and Cellular Proof of Concept. Journal of Medicinal Chemistry, 2018, 61, 7261-7272.	6.4	27
9	Introduction of a Methyl Group Curbs Metabolism of Pyrido[3,4- <i>d</i>)pyrimidine Monopolar Spindle 1 (MPS1) Inhibitors and Enables the Discovery of the Phase 1 Clinical Candidate <i>N</i> ² -(2-Ethoxy-4-(4-methyl-4 <i>H</i> -1,2,4-triazol-3-yl)phenyl)-6-methyl- <i>N</i> ⁸ (BOS172722), Journal of Medicinal Chemistry, 2018, 61, 8226-8240.	-neopent	yl <mark>29</mark> rido[3,4
10	High Proliferation Rate and a Compromised Spindle Assembly Checkpoint Confers Sensitivity to the MPS1 Inhibitor BOS172722 in Triple-Negative Breast Cancers. Molecular Cancer Therapeutics, 2019, 18, 1696-1707.	4.1	24
11	Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy. British Journal of Cancer, 2017, 116, 1166-1176.	6.4	23
12	Expanding the scope of fused pyrimidines as kinase inhibitor scaffolds: synthesis and modification of pyrido[3,4-d]pyrimidines. Organic and Biomolecular Chemistry, 2015, 13, 893-904.	2.8	16
13	Optimizing Shape Complementarity Enables the Discovery of Potent Tricyclic BCL6 Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 8169-8190.	6.4	13
14	Structureâ€Enabled Discovery of a Stapled Peptide Inhibitor to Target the Oncogenic Transcriptional Repressor TLE1. Chemistry - A European Journal, 2017, 23, 9577-9584.	3.3	11
15	Into Deep Water: Optimizing BCL6 Inhibitors by Growing into a Solvated Pocket. Journal of Medicinal Chemistry, 2021, 64, 17079-17097.	6.4	11
16	Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Scientific Reports, 2020, 10, 16000.	3.3	8
17	Improved Binding Affinity and Pharmacokinetics Enable Sustained Degradation of BCL6 <i>In Vivo</i> . Journal of Medicinal Chemistry, 2022, 65, 8191-8207.	6.4	5