
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1742233/publications.pdf Version: 2024-02-01

LUNC WOON YANG

#	Article	IF	CITATIONS
1	Functionalisation of esters <i>via</i> 1,3-chelation using NaO <i>t</i> Bu: mechanistic investigations and synthetic applications. Organic Chemistry Frontiers, 2021, 8, 53-60.	2.3	9
2	Redox chemistry of nitrogen-doped CNT-encapsulated nitroxide radical polymers for high energy density and rate-capability organic batteries. Chemical Engineering Journal, 2021, 413, 127402.	6.6	13
3	Preparation and Utilization of Contiguous Bisaziridines as Chiral Building Blocks. Advanced Synthesis and Catalysis, 2021, 363, 3250-3257.	2.1	1
4	Binder-free organic cathode based on nitroxide radical polymer-functionalized carbon nanotubes and gel polymer electrolyte for high-performance sodium organic polymer batteries. Journal of Materials Chemistry A, 2020, 8, 17980-17986.	5.2	25
5	Glycerol conversion to high-value chemicals: the implication of unnatural α-amino acid syntheses using natural resources. Green Chemistry, 2019, 21, 2615-2620.	4.6	6
6	Synergistic Catalysis: Highly Enantioselective Cascade Reaction for the Synthesis of Dihydroacridines. Chemistry - A European Journal, 2019, 25, 7623-7627.	1.7	10
7	Structural Basis for the Enantioselectivity of Esterase Est-Y29 toward (<i>S</i>)-Ketoprofen. ACS Catalysis, 2019, 9, 755-767.	5.5	14
8	A metal-free and mild approach to 1,3,4-oxadiazol-2(3H)-ones via oxidative C–C bond cleavage using molecular oxygen. Organic and Biomolecular Chemistry, 2018, 16, 2105-2113.	1.5	3
9	Copperâ€Catalyzed Asymmetric Synthesis of Borylated <i>cis</i> â€Disubstituted Indolines. Chemistry - an Asian Journal, 2018, 13, 2365-2368.	1.7	27
10	Preparation of Chiral Contiguous Epoxyaziridines and Their Regioselective Ringâ€Opening for Drug Syntheses. Chemistry - A European Journal, 2018, 24, 2370-2374.	1.7	9
11	Birch Reduction of Aromatic Compounds by Inorganic Electride [Ca ₂ N] ^{+•} e [–] in an Alcoholic Solvent: An Analogue of Solvated Electrons. Journal of Organic Chemistry, 2018, 83, 13847-13853.	1.7	18
12	New development in the enantioselective synthesis of spiro compounds. Chemical Society Reviews, 2018, 47, 5946-5996.	18.7	293
13	Transition-metal-free conversion of lignin model compounds to high-value aromatics: scope and chemoselectivity. Green Chemistry, 2018, 20, 3761-3771.	4.6	23
14	Chemoselective Hydrodehalogenation of Organic Halides Utilizing Two-Dimensional Anionic Electrons of Inorganic Electride [Ca ₂ N] ⁺ ·e [–] . Langmuir, 2017, 33, 954-958.	1.6	22
15	Asymmetric Synthesis of α-Fluoro-β-Amino-oxindoles with Tetrasubstituted C–F Stereogenic Centers via Cooperative Cation-Binding Catalysis. Organic Letters, 2017, 19, 5336-5339.	2.4	44
16	Mixed Monosilyl Acetals and Catalystâ€Dependent Chemoselective Mukaiyama Aldol Reactions. Chemistry - A European Journal, 2017, 23, 16432-16437.	1.7	4
17	Frontispiece: Mixed Monosilyl Acetals and Catalystâ€Dependent Chemoselective Mukaiyama Aldol Reactions. Chemistry - A European Journal, 2017, 23, .	1.7	0
18	Impact of Carboxyl Groups in Graphene Oxide on Chemoselective Alcohol Oxidation with Ultra-Low Carbocatalyst Loading. Scientific Reports, 2017, 7, 3146.	1.6	22

#	Article	IF	CITATIONS
19	Organocatalytic regiospecific synthesis of 1H-indene-2-carbaldehyde derivatives: suppression of cycloolefin isomerisation by employing sterically demanding catalysts. Organic and Biomolecular Chemistry, 2017, 15, 1355-1362.	1.5	5
20	Organophotocatalytic Synthesis of Phosphoramidates. Advanced Synthesis and Catalysis, 2016, 358, 719-723.	2.1	29
21	Metalâ€Free Chemoselective Oxidative Dehomologation or Direct Oxidation of Alcohols: Implication for Biomass Conversion. ChemSusChem, 2016, 9, 233-233.	3.6	0
22	Enantioselective Organocatalytic Cyclopropanation of Enals Using Benzyl Chlorides. Journal of Organic Chemistry, 2016, 81, 3488-3500.	1.7	26
23	Metalâ€Free Chemoselective Oxidative Dehomologation or Direct Oxidation of Alcohols: Implication for Biomass Conversion. ChemSusChem, 2016, 9, 241-245.	3.6	31
24	Acetaldehyde: A Small Organic Molecule with Big Impact on Organocatalytic Reactions. Chemistry - A European Journal, 2016, 22, 2214-2234.	1.7	18
25	Chemoselective reduction and oxidation of ketones in water through control of the electron transfer pathway. Scientific Reports, 2015, 5, 10366.	1.6	21
26	Two dimensional inorganic electride-promoted electron transfer efficiency in transfer hydrogenation of alkynes and alkenes. Chemical Science, 2015, 6, 3577-3581.	3.7	51
27	Chemoselective and repetitive intermolecular cross-acyloin condensation reactions between a variety of aromatic and aliphatic aldehydes using a robust N-heterocyclic carbene catalyst. Organic and Biomolecular Chemistry, 2014, 12, 1547-1550.	1.5	30
28	The scalable pinacol coupling reaction utilizing the inorganic electride [Ca ₂ N] ⁺ ·e ^{â^'} as an electron donor. Chemical Communications, 2014, 50, 4791-4794.	2.2	42
29	Hydrotrifluoromethylation and iodotrifluoromethylation of alkenes and alkynes using an inorganic electride as a radical generator. Nature Communications, 2014, 5, 4881.	5.8	110
30	Expanding the Scope of the Organocatalytic Addition of Fluorobis(phenylsulfonyl)methane to Enals: Enantioselective Cascade Synthesis of Fluoroindane and Fluorochromanol Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 437-446.	2.1	19
31	Transition-Metal-Free and Chemoselective NaO ^{<i>t</i>} Bu–O ₂ -Mediated Oxidative Cleavage Reactions of <i>vic</i> -1,2-Diols to Carboxylic Acids and Mechanistic Insight into the Reaction Pathways. Organic Letters, 2014, 16, 2876-2879.	2.4	33
32	In situ generation of hydroperoxide by oxidation of benzhydrols to benzophenones using sodium hydride under oxygen atmosphere: use for the oxidative cleavage of cyclic 1,2-diketones to dicarboxylic acids. Tetrahedron Letters, 2013, 54, 373-376.	0.7	17
33	Organocatalytic asymmetric synthesis of \hat{l}^2 3-amino acid derivatives. Organic and Biomolecular Chemistry, 2013, 11, 4737.	1.5	29
34	Transition metal-free, NaOtBu-O2-mediated one-pot cascade oxidation of allylic alcohols to α,β-unsaturated carboxylic acids. Green Chemistry, 2012, 14, 2996.	4.6	23
35	One-Pot Synthesis of Esters through a Benzoin Condensation-Oxidative Cleavage-Esterification Triple Cascade Reaction. Bulletin of the Korean Chemical Society, 2012, 33, 3122-3124.	1.0	2
36	N-Heterocyclic carbene-catalysed intermolecular Stetter reactions of acetaldehyde. Organic and Biomolecular Chemistry, 2011, 9, 2069.	1.5	32

#	Article	IF	CITATIONS
37	Switching Regioselectivity in Crossed Acyloin Condensations between Aromatic Aldehydes and Acetaldehyde by Altering <i>N</i> -Heterocyclic Carbene Catalysts. Organic Letters, 2011, 13, 880-883.	2.4	83
38	Oxidation of benzoins to benzoic acids using sodium hydride under oxygen atmosphere. Tetrahedron Letters, 2011, 52, 502-504.	0.7	24
39	Inverse Enantioselectivity with Catalyst Loading in Enantioselective Self-Benzoin Condensation using Triazolium-based N-Heterocyclic Carbene Catalyst. Bulletin of the Korean Chemical Society, 2011, 32, 4408-4410.	1.0	5
40	NHC-Assisted One-Pot Domino Oxidation of Aldehydes into Carboxylic Acids using Sodium Hydride under Oxygen Atmosphere. Bulletin of the Korean Chemical Society, 2011, 32, 2529-2530.	1.0	3
41	A Chiralâ€Anion Generator: Application to Catalytic Desilylative Kinetic Resolution of Silylâ€Protected Secondary Alcohols. Angewandte Chemie - International Edition, 2010, 49, 8915-8917.	7.2	69
42	Oxidation of benzoins to benzils using sodium hydride. Tetrahedron Letters, 2010, 51, 6006-6007.	0.7	33
43	Proline-catalysed Mannich reactions of acetaldehyde. Nature, 2008, 452, 453-455.	13.7	263
44	Asymmetric Enamine Catalysis. Chemical Reviews, 2007, 107, 5471-5569.	23.0	2,584
45	Proline-Catalyzed Mannich Reaction of Aldehydes withN-Boc-Imines. Angewandte Chemie - International Edition, 2007, 46, 609-611.	7.2	179
46	Practical Proline-catalyzed asymmetric Mannich reaction of aldehydes with N-Boc-imines. Nature Protocols, 2007, 2, 1937-1942.	5.5	32
47	CHEMISTRY: The Organic Approach to Asymmetric Catalysis. Science, 2006, 313, 1584-1586.	6.0	303
48	Catalytic Asymmetric Transfer Hydrogenation of α-Ketoesters with Hantzsch Esters. Organic Letters, 2006, 8, 5653-5655.	2.4	110
49	Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of ?,?-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2005, 44, 108-110.	7.2	320
50	Heterogeneous Organocatalysis for the Asymmetric Desymmetrization of meso-Cyclic Anhydrides Using Silica Gel-Supported Bis-cinchona Alkaloids ChemInform, 2005, 36, no.	0.1	0
51	A Metal-Free Transfer Hydrogenation: Organocatalytic Conjugate Reduction of ?,?-Unsaturated Aldehydes ChemInform, 2005, 36, no.	0.1	0
52	Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of ?,?-Unsaturated Aldehydes ChemInform, 2005, 36, no.	0.1	0
53	Catalytic Asymmetric Reductive Michael Cyclization. Journal of the American Chemical Society, 2005, 127, 15036-15037.	6.6	386
54	A Metal-Free Transfer Hydrogenation: Organocatalytic Conjugate Reduction of ?,?-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2004, 43, 6660-6662.	7.2	323

#	Article	IF	CITATIONS
55	Silica gel-supported bis-cinchona alkaloid: a chiral catalyst for the heterogeneous asymmetric desymmetrization of meso-cyclic anhydrides. Tetrahedron Letters, 2004, 45, 3301-3304.	0.7	38
56	Heterogeneous organocatalysis for the asymmetric desymmetrization of meso-cyclic anhydrides using silica gel-supported bis-cinchona alkaloids. Tetrahedron, 2004, 60, 12051-12057.	1.0	50
57	Synthesis of DNA Triangles with Vertexes of Bis(terpyridine)iron(II) Complexes. Journal of the American Chemical Society, 2004, 126, 8606-8607.	6.6	89
58	Osmylated macroporous resins: safe, highly efficient and recyclable catalysts for asymmetric aminohydroxylation of olefinsElectronic supplementary information (ESI) available: experimental procedure. See http://www.rsc.org/suppdata/cc/b3/b303022a/. Chemical Communications, 2003, , 1312-1313.	2.2	13
59	Heterogeneous Pd-Catalyzed Asymmetric Allylic Substitution Using Resin-Supported Trost-Type Bisphosphane Ligands ChemInform, 2003, 34, no.	0.1	Ο
60	Osmylated Macroporous Resins: Safe, Highly Efficient and Recyclable Catalysts for Asymmetric Aminohydroxylation of Olefins ChemInform, 2003, 34, no.	0.1	0
61	Osmium Tetroxide Anchored to Porous Resins Bearing Residual Vinyl Groups:  A Highly Active and Recyclable Solid for Asymmetric Dihydroxylation of Olefins. Organic Letters, 2002, 4, 4685-4688.	2.4	54
62	Heterogeneous Pd-Catalyzed Asymmetric Allylic Substitution Using Resin-Supported Trost-Type Bisphosphane Ligands. Angewandte Chemie - International Edition, 2002, 41, 3852-3854.	7.2	51
63	Silica gel supported bis-cinchona alkaloid: a highly efficient chiral ligand for heterogeneous asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 1997, 8, 841-844.	1.8	62
64	Efficient and practical polymeric catalysts for heterogeneous asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 1996, 7, 645-648.	1.8	89
65	Cinchona-Based Organocatalysts for Asymmetric Oxidations and Reductions. , 0, , 105-129.		Ο
66	Substrate ontrolled Chemoâ€∤Enantioselective Synthesis of αâ€Benzylated Enals and Chiral Cyclopropaneâ€Fused 2 hromanone Derivatives. Advanced Synthesis and Catalysis, 0, , .	2.1	4