
Changtong Mei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741759/publications.pdf Version: 2024-02-01

CHANCTONE MEL

#	Article	IF	CITATIONS
1	Electrospun nanofiber reinforced composites: a review. Polymer Chemistry, 2018, 9, 2685-2720.	1.9	431
2	Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Applied Materials & Interfaces, 2018, 10, 27987-28002.	4.0	420
3	A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydrate Polymers, 2020, 250, 116905.	5.1	184
4	Electrospun Core–Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Applied Materials & Interfaces, 2019, 11, 44624-44635.	4.0	164
5	Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Industrial Crops and Products, 2019, 128, 94-107.	2.5	163
6	Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose, 2017, 24, 4433-4448.	2.4	149
7	Wood-Inspired Anisotropic Cellulose Nanofibril Composite Sponges for Multifunctional Applications. ACS Applied Materials & Interfaces, 2020, 12, 35513-35522.	4.0	148
8	Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 50281-50297.	4.0	125
9	Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose, 2019, 26, 6653-6667.	2.4	123
10	Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials, 2019, 9, 937.	1.9	112
11	3D Printed Ti ₃ C ₂ T <i>_x</i> MXene/Cellulose Nanofiber Architectures for Solid‣tate Supercapacitors: Ink Rheology, 3D Printability, and Electrochemical Performance. Advanced Functional Materials, 2022, 32, .	7.8	85
12	Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Carbohydrate Polymers, 2020, 246, 116548.	5.1	82
13	A Chemically Selfâ€Charging Flexible Solidâ€State Zincâ€Ion Battery Based on VO ₂ Cathode and Polyacrylamide–Chitin Nanofiber Hydrogel Electrolyte. Advanced Energy Materials, 2021, 11, 2003902.	10.2	77
14	Liquid Transport and Real-Time Dye Purification <i>via</i> Lotus Petiole-Inspired Long-Range-Ordered Anisotropic Cellulose Nanofibril Aerogels. ACS Nano, 2021, 15, 20666-20677.	7.3	75
15	Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2014, 66, 128-134.	3.8	74
16	The influence of grafted cellulose nanofibers and postextrusion annealing treatment on selected properties of poly(lactic acid) filaments for 3D printing. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 847-855.	2.4	70
17	Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 59142-59153.	4.0	70
18	pH-Responsive Water-Based Drilling Fluids Containing Bentonite and Chitin Nanocrystals. ACS Sustainable Chemistry and Engineering, 2018, 6, 3783-3795.	3.2	69

#	Article	IF	CITATIONS
19	Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydrate Polymers, 2022, 276, 118799.	5.1	68
20	Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms. Journal of Hazardous Materials, 2021, 413, 125305.	6.5	64
21	Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property. Carbohydrate Polymers, 2018, 189, 331-341.	5.1	59
22	Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal. Chemosphere, 2020, 250, 126291.	4.2	58
23	Simultaneous removal of rhodamine B and Cr(VI) from water using cellulose carbon nanofiber incorporated with bismuth oxybromide: The effect of cellulose pyrolysis temperature on photocatalytic performance. Environmental Research, 2020, 185, 109414.	3.7	53
24	Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites. Cellulose, 2018, 25, 4133-4144.	2.4	50
25	Graphene oxide incorporated alginate hydrogel beads for the removal of various organic dyes and bisphenol A in water. Colloid and Polymer Science, 2018, 296, 607-615.	1.0	49
26	Overcoming Salt Contamination of Bentonite Water-Based Drilling Fluids with Blended Dual-Functionalized Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2020, 8, 11569-11578.	3.2	46
27	Lightweight and anisotropic cellulose nanofibril/rectorite composite sponges for efficient dye adsorption and selective separation. International Journal of Biological Macromolecules, 2022, 207, 130-139.	3.6	41
28	Advanced nanocellulose-based gas barrier materials: Present status and prospects. Chemosphere, 2022, 286, 131891.	4.2	39
29	Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrasonics Sonochemistry, 2020, 64, 104783.	3.8	38
30	Preparation and Performance of Radiata-Pine-Derived Polyvinyl Alcohol/Carbon Quantum Dots Fluorescent Films. Materials, 2020, 13, 67.	1.3	35
31	Thermothickening Drilling Fluids Containing Bentonite and Dual-Functionalized Cellulose Nanocrystals. Energy & Fuels, 2020, 34, 8206-8215.	2.5	34
32	Chiral Nematic Coatings Based on Cellulose Nanocrystals as a Multiplexing Platform for Humidity Sensing and Dual Anticounterfeiting. Small, 2021, 17, e2103936.	5.2	32
33	Preparation and Properties of Cyanobacteria-Based Carbon Quantum Dots/Polyvinyl Alcohol/ Nanocellulose Composite. Polymers, 2020, 12, 1143.	2.0	30
34	Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing. Materials and Design, 2021, 198, 109314.	3.3	30
35	Fast Microwave Synthesis of Hierarchical Porous Carbons from Waste Palm Boosted by Activated Carbons for Supercapacitors. Nanomaterials, 2019, 9, 405.	1.9	28
36	Surface wetting behavior of nanocellulose-based composite films. Cellulose, 2018, 25, 5071-5087.	2.4	27

#	Article	IF	CITATIONS
37	Novel double-networked polyurethane composites with multi-stimuli responsive functionalities. Journal of Materials Chemistry A, 2018, 6, 17457-17472.	5.2	26
38	Taguchi design for optimization of structural and mechanical properties of hydroxyapatite-alumina-titanium nanocomposite. Ceramics International, 2019, 45, 10097-10105.	2.3	25
39	Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites. Materials, 2015, 8, 8510-8523.	1.3	24
40	Influence of Cellulose Nanoparticles on Rheological Behavior of Oil Well Cement-Water Slurries. Materials, 2019, 12, 291.	1.3	24
41	An anionic polyelectrolyte hybrid for wood-polyethylene composites with high strength and fire safety via self-assembly. Construction and Building Materials, 2020, 248, 118661.	3.2	24
42	Antibacterial nanocomposite based on carbon nanotubes–silver nanoparticles-co-doped polylactic acid. Polymer Bulletin, 2020, 77, 793-804.	1.7	23
43	Fatsia Japonica-Derived Hierarchical Porous Carbon for Supercapacitors With High Energy Density and Long Cycle Life. Frontiers in Chemistry, 2020, 8, 89.	1.8	22
44	Rapid microwave activation of waste palm into hierarchical porous carbons for supercapacitors using biochars from different carbonization temperatures as catalysts. RSC Advances, 2019, 9, 19441-19449.	1.7	20
45	Improved Hydrophobicity and Dimensional Stability of Wood Treated with Paraffin/Acrylate Compound Emulsion through Response Surface Methodology Optimization. Polymers, 2020, 12, 86.	2.0	20
46	Facile synthesis of phosphorusâ€nitrogen doped carbon quantum dots from cyanobacteria for bioimaging. Canadian Journal of Chemical Engineering, 2021, 99, 1926-1939.	0.9	20
47	Light stabilizers added to the shell of co-extruded wood/high-density polyethylene composites to improve mechanical and anti-UV ageing properties. Royal Society Open Science, 2018, 5, 180074.	1.1	19
48	Direct Ink Writing of Flexible Electronics on Paper Substrate with Graphene/Polypyrrole/Carbon Black Ink. Journal of Electronic Materials, 2019, 48, 3157-3168.	1.0	19
49	The effect of water sorption/desorption on fatigue deflection of OSB. Construction and Building Materials, 2019, 223, 1196-1203.	3.2	18
50	Effect of solvent fractionation pretreatment on energy consumption of cellulose nanofabrication from switchgrass. Journal of Materials Science, 2019, 54, 8010-8022.	1.7	17
51	Effect of the nanosilica content in the shell of coextruded woodâ€plastic composites to enhance the ultraviolet aging resistance. Polymers for Advanced Technologies, 2019, 30, 162-169.	1.6	17
52	Polyethylene glycol and silica sol penetration improves hydrophobicity and dimensional stability of wood after a short-time treatment. European Journal of Wood and Wood Products, 2021, 79, 1395-1404.	1.3	17
53	Improved processability and high fire safety of wood plastic composites via assembling reversible imine crosslinking network. Chemical Engineering Journal, 2021, 423, 130295.	6.6	17
54	Improved mechanical properties and hydrophobicity on wood flour reinforced composites: Incorporation of silica/montmorillonite nanoparticles in polymers. Polymer Composites, 2020, 41, 1090-1099.	2.3	16

4

#	Article	IF	CITATIONS
55	Antibacterial, Flexible, and Conductive Membrane Based on MWCNTs/Ag Coated Electro-Spun PLA Nanofibrous Scaffolds as Wearable Fabric for Body Motion Sensing. Polymers, 2020, 12, 120.	2.0	15
56	Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation. Journal of Materials Science, 2021, 56, 5624-5636.	1.7	15
5 7	Interfacial modification mechanism of nanocellulose as a compatibilizer for immiscible binary poly(vinyl alcohol)/poly(ethylene oxide) blends. Journal of Applied Polymer Science, 2018, 135, 45896.	1.3	14
58	Coextruded Wood Plastic Composites Containing Recycled Wood Fibers Treated with Micronized Copper-Quat: Mechanical, Moisture Absorption, and Chemical Leaching Performance. Waste and Biomass Valorization, 2018, 9, 2237-2244.	1.8	14
59	Mechanically adaptive nanocomposites with cellulose nanocrystals: Strain-field mapping with digital image correlation. Carbohydrate Polymers, 2019, 211, 11-21.	5.1	13
60	Using low carbon footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for sustainable bioethanol production. Bioresource Technology, 2020, 313, 123675.	4.8	13
61	Investigating the interaction between internal structural changes and water sorption of MDF and OSB using X-ray computed tomography. Wood Science and Technology, 2018, 52, 701-716.	1.4	12
62	The effect of lathe checks on the mechanical performance of LVL. European Journal of Wood and Wood Products, 2020, 78, 545-554.	1.3	12
63	Inhibiting wood-water interactions by hydrothermal hemicellulose extraction combined with furfurylation. Holzforschung, 2022, 76, 245-255.	0.9	12
64	Effects of chlorite delignification on dynamic mechanical performances and dynamic sorption behavior of wood. Cellulose, 2021, 28, 9461-9474.	2.4	11
65	Sodium Hydroxide-Free Soy Protein Isolate-Based Films Crosslinked by Pentaerythritol Glycidyl Ether. Polymers, 2018, 10, 1300.	2.0	9
66	A Branched Polyelectrolyte Complex Enables Efficient Flame Retardant and Excellent Robustness for Wood/Polymer Composites. Polymers, 2020, 12, 2438.	2.0	9
67	The effect of structural changes on the compressive strength of LVL. Wood Science and Technology, 2020, 54, 1253-1267.	1.4	9
68	Understanding the effect of growth ring orientation on the compressive strength perpendicular to the grain of thermally treated wood. Wood Science and Technology, 2021, 55, 1439-1456.	1.4	9
69	The thermal property and flame retardancy of RPC with a polyelectrolyte complex of nanocrystalline cellulose and ammonium polyphosphate. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2089-2096.	2.0	8
70	Comparative mechanical, fireâ€retarding, and morphological properties of highâ€density polyethylene/(wood flour) composites with different flame retardants. Journal of Vinyl and Additive Technology, 2018, 24, 3-12.	1.8	7
71	A comparative study of different nanoclay-reinforced cellulose nanofibril biocomposites with enhanced thermal and mechanical properties. Composite Interfaces, 2018, 25, 301-315.	1.3	7
72	Analysis on the Influence of Component Ratio on Properties of Silica/Montmorillonite Nanocomposites. Materials, 2018, 11, 2074.	1.3	7

#	Article	IF	CITATIONS
73	Heat treatment induces chemical changes and silica sol penetration in wood for properties improvement: hydrophobicity, thermal stability, and surface hardness. Journal of Wood Chemistry and Technology, 2022, 42, 104-113.	0.9	7
74	Eco-friendly preparation of high-quality mineralizedÂwood via thermal modification induced silica sol penetration. Industrial Crops and Products, 2022, 183, 115003.	2.5	7
75	Acrylamide–formaldehyde–urea copolymer as a novel compatibilizer for high density polyethylene/plant fiber composite. Polymer Bulletin, 2011, 67, 375-382.	1.7	6
76	How does Pickering Emulsion Pre-treatment Influence the Properties of Wood Flour and its Composites with High-Density Polyethylene?. Polymers, 2019, 11, 1115.	2.0	6
77	Effects of furfurylation on interactions between moisture sorption and humidity conditioning of wood. Wood Science and Technology, 2022, 56, 703-720.	1.4	6
78	Unveiling the mechanism of various pretreatments on improving enzymatic hydrolysis efficiency of the giant reed by chromatic analysis. Biomass Conversion and Biorefinery, 2023, 13, 2151-2161.	2.9	5
79	Performance improvement of poplar wood based on the synergies of furfurylation and polyethylene glycol impregnation. Holzforschung, 2022, 76, 825-837.	0.9	5
80	Effects of hybridization and interface modification on mechanical properties of wood flour/polymer composites reinforced by glass fibers. Polymer Composites, 2019, 40, 3601-3610.	2.3	4
81	Rapid Preparation of Cellulose Nanofibers from Energy Cane Bagasse and Their Application as Stabilizer and Rheological Modifiers in Magnetorheological Fluid. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
82	Energy Release Rate Measurement of Welded Bamboo Joints. Journal of Renewable Materials, 2017, , .	1.1	3
83	New insights into Chinese traditional handmade paper: influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii. Cellulose, 2021, 28, 9943-9957.	2.4	3
84	Understanding the impact of wood type and moisture on the bonding strength of glued wood. Wood Material Science and Engineering, 2023, 18, 303-313.	1.1	3
85	Microstructure, hydrophobicity and thermal stability of wood treated by silica/montmorillonite nanoparticle-stabilized Pickering emulsion (I). Wood Science and Technology, 2022, 56, 111-121.	1.4	2
86	Understanding the mechanical strength and dynamic structural changes of wood-based products using X-ray computed tomography. Wood Material Science and Engineering, 2023, 18, 454-463.	1.1	2
87	Zincâ€lon Batteries: A Chemically Selfâ€Charging Flexible Solidâ€State Zincâ€lon Battery Based on VO ₂ Cathode and Polyacrylamide–Chitin Nanofiber Hydrogel Electrolyte (Ady, Energy) Ti ETO	al 1 01 7 8431	4 røBT /Over