
Erling Thyrhaug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature, 2017, 543, 695-699.	27.8	287
2	Quantum biology revisited. Science Advances, 2020, 6, eaaz4888.	10.3	266
3	Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex. Nature Chemistry, 2018, 10, 780-786.	13.6	177
4	Exciton Structure and Energy Transfer in the Fenna–Matthews–Olson Complex. Journal of Physical Chemistry Letters, 2016, 7, 1653-1660.	4.6	97
5	Ultrathin Reduced Graphene Oxide Films as Transparent Top ontacts for Light Switchable Solid‣tate Molecular Junctions. Advanced Materials, 2013, 25, 4164-4170.	21.0	75
6	Hole-mediated photoredox catalysis: tris(<i>p</i> -substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. Organic Chemistry Frontiers, 2021, 8, 1132-1142.	4.5	72
7	Entrapped Molecular Photocatalyst and Photosensitizer in Metal–Organic Framework Nanoreactors for Enhanced Solar CO ₂ Reduction. ACS Catalysis, 2021, 11, 871-882.	11.2	65
8	Polarization and Symmetry of Electronic Transitions in Long Fluorescence Lifetime Triangulenium Dyes. Journal of Physical Chemistry A, 2013, 117, 2160-2168.	2.5	50
9	Ultrafast coherence transfer in DNA-templated silver nanoclusters. Nature Communications, 2017, 8, 15577.	12.8	45
10	Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay. Methods and Applications in Fluorescence, 2013, 1, 025001.	2.3	42
11	Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer. Optics Express, 2017, 25, A483.	3.4	31
12	Direct probing of ion pair formation using a symmetric triangulenium dye. Photochemical and Photobiological Sciences, 2011, 10, 1963-1973.	2.9	26
13	Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynthesis Research, 2018, 135, 45-54.	2.9	20
14	Counterions Control Whether Selfâ€Assembly Leads to Formation of Stable and Wellâ€Đefined Unilamellar Nanotubes or Nanoribbons and Nanorods. Chemistry - A European Journal, 2014, 20, 6853-6856.	3.3	18
15	Single-molecule excitation–emission spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4064-4069.	7.1	16
16	Reduced Molecular Flavins as Single-Electron Reductants after Photoexcitation. Journal of the American Chemical Society, 2022, 144, 4721-4726.	13.7	16
17	Activation of 2â€Cyclohexenone by BF 3 Coordination: Mechanistic Insights from Theory and Experiment. Angewandte Chemie - International Edition, 2021, 60, 10155-10163.	13.8	15
18	Generalized Huang-Rhys factors for molecular aggregates. Chemical Physics, 2020, 528, 110495.	1.9	14

ERLING THYRHAUG

#	Article	IF	CITATIONS
19	Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements. Methods and Applications in Fluorescence, 2015, 3, 045001.	2.3	12
20	The central role of the metal ion for photoactivity: Zn– vs. Ni–Mabiq. Chemical Science, 2021, 12, 7521-7532.	7.4	11
21	First Step in Chemical Preparation of Metal Nanogaps Bridged by Thiol End-Capped Molecular Wires. Journal of Physical Chemistry B, 2010, 114, 11771-11777.	2.6	9
22	Intraband dynamics and exciton trapping in the LH2 complex of Rhodopseudomonas acidophila. Journal of Chemical Physics, 2021, 154, 045102.	3.0	9
23	A nitrophenyl-carbazole based push-pull linker as a building block for non-linear optical active coordination polymers: A structural and photophysical study. Dyes and Pigments, 2021, 186, 109012.	3.7	8
24	Fluorescent polyelectrolyte capped silver nanoclusters: Optimization and spectroscopic evaluation. Chemical Physics Letters, 2012, 549, 72-76.	2.6	7
25	Activation of 2 yclohexenone by BF 3 Coordination: Mechanistic Insights from Theory and Experiment. Angewandte Chemie, 2021, 133, 10243-10251.	2.0	5
26	Time-domain photocurrent spectroscopy based on a common-path birefringent interferometer. Review of Scientific Instruments, 2020, 91, 123101.	1.3	4
27	New Nonlinear Optical Crystal of Rhodamine 590 Acid Phthalate. ACS Omega, 2020, 5, 20863-20873.	3.5	4
28	Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes. Photochemical and Photobiological Sciences, 2014, 13, 1093.	2.9	2
29	Convenient one-step synthesis of 5-carboxy-seminaphthofluoresceins. Tetrahedron Letters, 2017, 58, 1611-1615.	1.4	2
30	Model-Independent Simulation Complexity of Complex Quantum Dynamics. Physical Review Letters, 2021, 126, 150402.	7.8	2
31	Single-Molecule Excitation-Emission Spectroscopy at Room Temperature Based on a Common-Path Interferometer. , 2019, , .		Ο
32	Broadband excitation-emission Fourier-transform spectroscopy of single molecules at ambient conditions (Conference Presentation). , 2018, , .		0