Robin C May

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/174156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3739-3744.	3.3	695
2	Cryptococcus: from environmental saprophyte to global pathogen. Nature Reviews Microbiology, 2016, 14, 106-117.	13.6	387
3	Emergence and Pathogenicity of Highly Virulent Cryptococcus gattii Genotypes in the Northwest United States. PLoS Pathogens, 2010, 6, e1000850.	2.1	303
4	Involvement of the Arp2/3 complex in phagocytosis mediated by FcγR or CR3. Nature Cell Biology, 2000, 2, 246-248.	4.6	296
5	Expulsion of Live Pathogenic Yeast by Macrophages. Current Biology, 2006, 16, 2156-2160.	1.8	278
6	The Case for Adopting the "Species Complex―Nomenclature for the Etiologic Agents of Cryptococcosis. MSphere, 2017, 2, .	1.3	274
7	Rho-Kinase and Myosin-II Control Phagocytic Cup Formation during CR, but Not FcγR, Phagocytosis. Current Biology, 2002, 12, 1413-1418.	1.8	230
8	The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12980-12985.	3.3	180
9	Cryptococcal Interactions with the Host Immune System. Eukaryotic Cell, 2010, 9, 835-846.	3.4	167
10	The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Current Biology, 1999, 9, 759-762.	1.8	164
11	Caenorhabditis elegans, a Model Organism for Investigating Immunity. Applied and Environmental Microbiology, 2012, 78, 2075-2081.	1.4	158
12	Genes Required for Systemic RNA Interference in Caenorhabditis elegans. Current Biology, 2004, 14, 111-116.	1.8	154
13	Cytokine Signaling Regulates the Outcome of Intracellular Macrophage Parasitism by <i>Cryptococcus neoformans</i> . Infection and Immunity, 2009, 77, 3450-3457.	1.0	146
14	Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. Journal of Cell Biology, 2011, 193, 831-839.	2.3	144
15	Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection. Scientific Reports, 2016, 6, 21489.	1.6	139
16	The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathogens, 2018, 14, e1006978.	2.1	137
17	<i>Cryptococcus</i> interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen. Cellular Microbiology, 2013, 15, 403-411.	1.1	131
18	Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nature Communications, 2018, 9, 2253.	5.8	131

#	Article	IF	CITATIONS
19	Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. Journal of Clinical Investigation, 2014, 124, 2000-2008.	3.9	130
20	Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nature Communications, 2018, 9, 1556.	5.8	128
21	The Human Fungal Pathogen Cryptococcus neoformans Escapes Macrophages by a Phagosome Emptying Mechanism That Is Inhibited by Arp2/3 Complex-Mediated Actin Polymerisation. PLoS Pathogens, 2010, 6, e1001041.	2.1	127
22	Cryptococcus gattii in North American Pacific Northwest: Whole-Population Genome Analysis Provides Insights into Species Evolution and Dispersal. MBio, 2014, 5, e01464-14.	1.8	126
23	Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest. PLoS ONE, 2013, 8, e71148.	1.1	122
24	Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii. MBio, 2015, 6, e00868-15.	1.8	101
25	A Diverse Population of Cryptococcus gattii Molecular Type VGIII in Southern Californian HIV/AIDS Patients. PLoS Pathogens, 2011, 7, e1002205.	2.1	95
26	Genotypic Diversity Is Associated with Clinical Outcome and Phenotype in Cryptococcal Meningitis across Southern Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003847.	1.3	94
27	Chapter 5 Virulence in Cryptococcus Species. Advances in Applied Microbiology, 2009, 67, 131-190.	1.3	88
28	The fungal pathogen <i>Cryptococcus neoformans</i> manipulates macrophage phagosome maturation. Cellular Microbiology, 2015, 17, 702-713.	1.1	88
29	<i>SEC14</i> is a specific requirement for secretion of phospholipase B1 and pathogenicity of <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2011, 80, 1088-1101.	1.2	87
30	Cryptosporidium parvum Infection Requires Host Cell Actin Polymerization. Infection and Immunity, 2001, 69, 5940-5942.	1.0	86
31	Direct cell-to-cell spread of a pathogenic yeast. BMC Immunology, 2007, 8, 15.	0.9	86
32	Cryptococcus gattii VGIII Isolates Causing Infections in HIV/AIDS Patients in Southern California: Identification of the Local Environmental Source as Arboreal. PLoS Pathogens, 2014, 10, e1004285.	2.1	85
33	Zebrafish: A See-Through Host and a Fluorescent Toolbox to Probe Host–Pathogen Interaction. PLoS Pathogens, 2012, 8, e1002349.	2.1	84
34	†Division of labour' in response to host oxidative burst drives a fatal Cryptococcus gattii outbreak. Nature Communications, 2014, 5, 5194.	5.8	82
35	SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection. Infection and Immunity, 2011, 79, 4342-4352.	1.0	79
36	Mechanisms of infection by the human fungal pathogen <i>Cryptococcus neoformans</i> . Future Microbiology, 2012, 7, 1297-1313.	1.0	76

#	Article	IF	CITATIONS
37	Laboratory adapted <i><scp>E</scp>scherichia coli</i> <scp>K</scp> â€12 becomes a pathogen of <i><scp>C</scp>aenorhabditis elegans</i> upon restoration of <scp>O</scp> antigen biosynthesis. Molecular Microbiology, 2013, 87, 939-950.	1.2	72
38	Fungal Pathogens: Survival and Replication within Macrophages. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019661.	2.9	72
39	What makes <i>Cryptococcus gattii</i> a pathogen?. FEMS Yeast Research, 2016, 16, fov106.	1.1	69
40	The Arp2/3 complex: a central regulator of the actin cytoskeleton. Cellular and Molecular Life Sciences, 2001, 58, 1607-1626.	2.4	66
41	Mechanisms of microbial escape from phagocyte killing. Biochemical Society Transactions, 2013, 41, 475-490.	1.6	62
42	The CovS/CovR Acid Response Regulator Is Required for Intracellular Survival of Group B Streptococcus in Macrophages. Infection and Immunity, 2012, 80, 1650-1661.	1.0	59
43	Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci. PLoS ONE, 2010, 5, e15968.	1.1	58
44	Protist-Type Lysozymes of the Nematode Caenorhabditis elegans Contribute to Resistance against Pathogenic Bacillus thuringiensis. PLoS ONE, 2011, 6, e24619.	1.1	57
45	Gender, immunity and the regulation of longevity. BioEssays, 2007, 29, 795-802.	1.2	49
46	Extracellular vesicles of human pathogenic fungi. Current Opinion in Microbiology, 2019, 52, 90-99.	2.3	47
47	<i>Cryptococcus</i> extracellular vesicles properties and their use as vaccine platforms. Journal of Extracellular Vesicles, 2021, 10, e12129.	5.5	47
48	RNA Interference Spreading in C. elegans. Methods in Enzymology, 2005, 392, 308-315.	0.4	46
49	Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genetics, 2013, 9, e1003771.	1.5	45
50	Cryptococcal Phospholipase B1 Is Required for Intracellular Proliferation and Control of Titan Cell Morphology during Macrophage Infection. Infection and Immunity, 2015, 83, 1296-1304.	1.0	45
51	Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5. Science Advances, 2017, 3, e1700898.	4.7	45
52	Mitochondria and the regulation of hypervirulence in the fatal fungal outbreak on Vancouver Island. Virulence, 2010, 1, 197-201.	1.8	41
53	Cryptococcus neoformans Thermotolerance to Avian Body Temperature Is Sufficient For Extracellular Growth But Not Intracellular Survival In Macrophages. Scientific Reports, 2016, 6, 20977.	1.6	39
54	Phenotypic Covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes. PLoS ONE, 2010, 5, e9978.	1.1	36

#	Article	IF	CITATIONS
55	Characterizing the Mechanisms of Nonopsonic Uptake of Cryptococci by Macrophages. Journal of Immunology, 2018, 200, 3539-3546.	0.4	36
56	Hepatocytes Delete Regulatory T Cells by Enclysis, a CD4+ T Cell Engulfment Process. Cell Reports, 2019, 29, 1610-1620.e4.	2.9	36
57	Sex-Dependent Resistance to the Pathogenic Fungus Cryptococcus neoformans. Genetics, 2006, 173, 677-683.	1.2	35
58	Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria. Journal of the American Society for Mass Spectrometry, 2017, 28, 2066-2077.	1.2	32
59	Species-specific antifungal activity of blue light. Scientific Reports, 2017, 7, 4605.	1.6	32
60	A Two-Gene Balance Regulates Salmonella Typhimurium Tolerance in the Nematode Caenorhabditis elegans. PLoS ONE, 2011, 6, e16839.	1.1	31
61	Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus <i>Cryptococcus gattii</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160021.	1.8	30
62	15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathogens, 2019, 15, e1007597.	2.1	30
63	New weapons in the Cryptococcus infection toolkit. Current Opinion in Microbiology, 2016, 34, 67-74.	2.3	29
64	Experimental Models of Cryptococcosis. International Journal of Microbiology, 2012, 2012, 1-10.	0.9	28
65	Viral infection triggers interferon-induced expulsion of live Cryptococcus neoformans by macrophages. PLoS Pathogens, 2020, 16, e1008240.	2.1	25
66	Now for something completely different: Prototheca, pathogenic algae. PLoS Pathogens, 2021, 17, e1009362.	2.1	25
67	Capsule Independent Uptake of the Fungal Pathogen Cryptococcus neoformans into Brain Microvascular Endothelial Cells. PLoS ONE, 2012, 7, e35455.	1.1	24
68	Vomocytosis: What we know so far. Cellular Microbiology, 2020, 22, e13145.	1.1	24
69	Zinc and Iron Homeostasis: Target-Based Drug Screening as New Route for Antifungal Drug Development. Frontiers in Cellular and Infection Microbiology, 2019, 9, 181.	1.8	23
70	Antifungal resistance: more research needed. Lancet, The, 2014, 384, 1427.	6.3	20
71	Novel cell-based in vitro screen to identify small-molecule inhibitors against intracellular replication of Cryptococcus neoformans in macrophages. International Journal of Antimicrobial Agents, 2016, 48, 69-77.	1.1	20
72	IgG1 Is Required for Optimal Protection after Immunization with the Purified Porin OmpD from <i>Salmonella</i> Typhimurium. Journal of Immunology, 2017, 199, 4103-4109.	0.4	20

#	Article	IF	CITATIONS
73	Systematic analysis of funding awarded for mycology research to institutions in the UK, 1997–2010. BMJ Open, 2014, 4, e004129.	0.8	19
74	Arps: Actin-Related Proteins. Results and Problems in Cell Differentiation, 2001, 32, 213-229.	0.2	18
75	Quantifying donor-to-donor variation in macrophage responses to the human fungal pathogen Cryptococcus neoformans. PLoS ONE, 2018, 13, e0194615.	1.1	17
76	A Glucuronoxylomannan Epitope Exhibits Serotype-Specific Accessibility and Redistributes towards the Capsule Surface during Titanization of the Fungal Pathogen Cryptococcus neoformans. Infection and Immunity, 2019, 87, .	1.0	16
77	Direct identification of bacterial and human proteins from infected wounds in living 3D skin models. Scientific Reports, 2020, 10, 11900.	1.6	15
78	Variability in innate host immune responses to cryptococcosis. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180060.	0.8	14
79	Regulator of G-Protein Signalling-14 (RGS14) Regulates the Activation of αMβ2 Integrin during Phagocytosis. PLoS ONE, 2013, 8, e69163.	1.1	13
80	AIDS-Related Mycoses: Updated Progress and Future Priorities. Trends in Microbiology, 2020, 28, 425-428.	3.5	13
81	Transcriptional Heterogeneity of <i>Cryptococcus gattii</i> VGII Compared with Non-VGII Lineages Underpins Key Pathogenicity Pathways. MSphere, 2018, 3, .	1.3	12
82	In Fungal Intracellular Pathogenesis, Form Determines Fate. MBio, 2018, 9, .	1.8	12
83	Deciphering Fungal Extracellular Vesicles: From Cell Biology to Pathogenesis. Current Clinical Microbiology Reports, 2019, 6, 89-97.	1.8	12
84	Application of High-Field Asymmetric Waveform Ion Mobility Separation to LESA Mass Spectrometry of Bacteria. Analytical Chemistry, 2019, 91, 4755-4761.	3.2	12
85	Cryptococcus neoformans Secretes Small Molecules That Inhibit IL-1Î ² Inflammasome-Dependent Secretion. Mediators of Inflammation, 2020, 2020, 1-20.	1.4	12
86	Younger for Longer: Insulin Signalling, Immunity and Ageing. Current Aging Science, 2010, 3, 166-176.	0.4	12
87	pH Manipulation as a Novel Strategy for Treating Mucormycosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 6968-6974.	1.4	10
88	Cryptococcal 3-Hydroxy Fatty Acids Protect Cells Against Amoebal Phagocytosis. Frontiers in Microbiology, 2015, 6, 1351.	1.5	9
89	Electroporation and Mass Spectrometry: A New Paradigm for In Situ Analysis of Intact Proteins Direct from Living Yeast Colonies. Analytical Chemistry, 2020, 92, 2605-2611.	3.2	8
90	Liquid Extraction Surface Analysis Mass Spectrometry of ESKAPE Pathogens. Journal of the American Society for Mass Spectrometry, 2021, 32, 1345-1351.	1.2	8

#	Article	IF	CITATIONS
91	Plagiarism and Pathogenesis. Developmental Cell, 2001, 1, 317-318.	3.1	7
92	Human immune polymorphisms associated with the risk of cryptococcal disease. Immunology, 2022, 165, 143-157.	2.0	5
93	Pre-copulatory reproductive behaviours are preserved in <i>Drosophila melanogaster</i> infected with bacteria. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220492.	1.2	5
94	Custom-Made Quorum Sensing for a Eukaryote. Developmental Cell, 2016, 37, 391-392.	3.1	4
95	Pyrifenox, an ergosterol inhibitor, differentially affects Cryptococcus neoformans and Cryptococcus gattii. Medical Mycology, 2020, 58, 928-937.	0.3	4
96	Native ambient mass spectrometry of intact protein assemblies directly from <i>Escherichia coli</i> colicolonies. Chemical Communications, 2022, 58, 6857-6860.	2.2	4
97	Editorial overview: Host-microbe interactions: fungi. Current Opinion in Microbiology, 2017, 40, v-vii.	2.3	3
98	Plugging a Leak: How Phagosomes "Stretch―to Accommodate Pathogen Growth. Cell Host and Microbe, 2020, 28, 774-775.	5.1	2
99	Cytotoxic T lymphocytes can induce a condemned state and synchronous post-mitotic apoptosis of daughter target cells. European Journal of Immunology, 1999, 29, 1793-1802.	1.6	1
100	It takes (more than) two to tango. Trends in Cell Biology, 2000, 10, 464.	3.6	1
101	Fuel-injected cell motility. Trends in Cell Biology, 2001, 11, 281.	3.6	1
102	Using Flow Cytometry to Analyze Cryptococcus Infection of Macrophages. Methods in Molecular Biology, 2017, 1519, 349-357.	0.4	1
103	Intracellular Replication and Exit Strategies. , 0, , 441-450.		1
104	Fungal Extracellular Vesicles in Interkingdom Communication. Current Topics in Microbiology and Immunology, 2021, 432, 81-88.	0.7	1
105	Dimers are forever. Trends in Cell Biology, 1999, 9, 214.	3.6	0
106	The bugs that get away. Trends in Cell Biology, 1999, 9, 343.	3.6	0
107	It's not how old you are, but how old your T-cells feel. Trends in Cell Biology, 2000, 10, 313.	3.6	0
108	Two tales of tails. Trends in Cell Biology, 2001, 11, 401.	3.6	0

#	Article	IF	CITATIONS
109	Of Russian dolls and river blindness. Trends in Cell Biology, 2002, 12, 250.	3.6	0
110	Ready-mix protein cookery. Trends in Cell Biology, 2002, 12, 498.	3.6	0
111	Isolating Intact Pathogens from Tissues. Genetic Engineering and Biotechnology News, 2012, 32, 30-31.	0.1	0
112	Exploring New Insights into Fungal Biology as Novel Antifungal Drug Targets. , 2015, , 159-182.		0