Tewodros Asefa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741488/publications.pdf

Version: 2024-02-01

205 papers 27,931 citations

66 h-index

16791

164 g-index

222 all docs $\begin{array}{c} 222 \\ \text{docs citations} \end{array}$

times ranked

222

35337 citing authors

#	Article	IF	CITATIONS
1	N-doped spherical activated carbon from dye adsorption: Bifunctional electrocatalyst for hydrazine oxidation and oxygen reduction. Journal of Environmental Chemical Engineering, 2022, 10, 107458.	3.3	4
2	Metal-Functionalized Hydrogels as Efficient Oxygen Evolution Electrocatalysts. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 20919-20929.	4.0	7
3	Robust Adsorption and Persulfate-Based Degradation of Doxycycline by Oxygen Vacancy-Rich Copper-Iron Oxides Prepared through a Mechanochemical Route. ACS ES&T Water, 2022, 2, 1031-1045.	2.3	6
4	Hierarchically Ordered Nanoporous Carbon with Exclusively Surfaceâ€Anchored Cobalt as Efficient Electrocatalyst. Small Methods, 2022, 6, .	4.6	5
5	(Fe,Co)/Nâ€Doped Multiâ€Walled Carbon Nanotubes as Efficient Bifunctional Electrocatalysts for Rechargeable Zincâ€Air Batteries. ChemCatChem, 2021, 13, 1023-1033.	1.8	22
6	Facile synthesis of an effective g-C ₃ N ₄ -based catalyst for advanced oxidation processes and degradation of organic compounds. Journal of Materials Chemistry A, 2021, 9, 14841-14850.	5.2	26
7	Nanoporous carbons derived from metal-conjugated phosphoprotein/silica: Efficient electrocatalysts for oxygen reduction and hydrazine oxidation reactions. Journal of Electroanalytical Chemistry, 2021, 882, 114997.	1.9	6
8	Single Coâ€Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small, 2021, 17, e2006477.	5.2	40
9	Nanostructured Carbon Electrocatalysts for Energy Conversions. Small, 2021, 17, e2007136.	5.2	13
10	Highly Dispersed Mo ₂ C Nanodots in Carbon Nanocages Derived from Moâ€Based Xerogel: Efficient Electrocatalysts for Hydrogen Evolution. Small Methods, 2021, 5, e2100334.	4.6	26
11	Antimicrobial properties of novel ionic liquids derived from imidazolium cation with phenolic functional groups. Bioorganic Chemistry, 2021, 115, 105289.	2.0	10
12	Sulfur-bridged iron-polyphthalocyanine on Cu _{<i>x</i>} O/copper foam: efficient and durable electrocatalyst for overall water splitting. Sustainable Energy and Fuels, 2021, 5, 5985-5993.	2.5	3
13	Electrocatalytic Degradation of Tetracycline by Cuâ€PANIâ€SBAâ€15 on Nickel Foam <i>via</i> Peroxymonosulfateâ€Based Advanced Oxidation Process. ChemElectroChem, 2021, 8, 4296-4304.	1.7	6
14	Cetylpyridinium Trichlorostannate: Synthesis, Antimicrobial Properties, and Controlled-Release Properties via Electrical Resistance Tomography. ACS Omega, 2021, 6, 35433-35441.	1.6	5
15	Hollow Hemispherical Carbon Microspheres with Mo ₂ C Nanoparticles Synthesized by Precursor Design: Effective Noble Metalâ€Free Catalysts for Dehydrogenation. Small Methods, 2020, 4, 1900597.	4.6	18
16	Nickel foam-supported Fe, Ni-Polyporphyrin microparticles: Efficient bifunctional catalysts for overall water splitting in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 28860-28869.	3.8	16
17	Active Site Engineering in Porous Electrocatalysts. Advanced Materials, 2020, 32, e2002435.	11.1	304
18	Nitrogen and Phosphorus Coâ€doped Nanoporous Carbons from Phosphoprotein/Silica Selfâ€Assemblies for Energy Storage in Supercapacitors. ChemElectroChem, 2020, 7, 4773-4781.	1.7	6

#	Article	IF	CITATIONS
19	Co ₈ FeS ₈ /N,S-Doped Carbons Derived from Fe-Co/S-Bridged Polyphthalocyanine: Efficient Dual-Function Air-Electrode Catalysts for Rechargeable Zn-Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13147-13158.	3.2	35
20	A Facile Route to Efficient Water Oxidation Electrodes via Electrochemical Activation of Iron in Nickel Sulfate Solution. ACS Sustainable Chemistry and Engineering, 2020, 8, 15550-15559.	3.2	5
21	Mn/Cu nanoclusters-grafted N-doped carbon nanotubes: Robust oxygen electrode catalysts for Zn-air batteries. International Journal of Hydrogen Energy, 2020, 45, 27230-27243.	3.8	12
22	Nonprecious Bimetallic Sites Coordinated on Nâ€Doped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction. Small, 2020, 16, e2000742.	5.2	50
23	Synthesis, Characterization, and Antimicrobial Investigation of a Novel Chlorhexidine Cyclamate Complex. Crystal Growth and Design, 2020, 20, 4991-4999.	1.4	6
24	Ordered Nanoporous Nitrogen- and Oxygen-Codoped Carbon Nanospheres as Electrocatalysts for Oxygen-Reduction Reaction in Direct Methanol Fuel Cells. ACS Applied Nano Materials, 2020, 3, 5139-5148.	2.4	10
25	Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Lowâ€Iridium Oxygen Evolution Catalysts. Angewandte Chemie - International Edition, 2020, 59, 19654-19658.	7.2	79
26	Ternary ZIF-8-derived dual-metal CoCu nanoparticles in porous carbon polyhedra as efficient catalysts for methanol oxidation. Journal of Materials Chemistry A, 2020, 8, 12285-12290.	5.2	16
27	Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Lowâ€ŀridium Oxygen Evolution Catalysts. Angewandte Chemie, 2020, 132, 19822-19826.	1.6	11
28	A CO ₂ /H ₂ fuel cell: reducing CO ₂ while generating electricity. Journal of Materials Chemistry A, 2020, 8, 8329-8336.	5.2	16
29	Sugarcane vinasse-derived nanoporous N-S-doped carbon material decorated with Co: A new and efficient multifunctional electrocatalyst. International Journal of Hydrogen Energy, 2020, 45, 9669-9682.	3.8	20
30	Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. Journal of Colloid and Interface Science, 2020, 567, 92-102.	5.0	22
31	Synthesis, Characterization, and Investigation of the Antimicrobial Activity of Cetylpyridinium Tetrachlorozincate. ACS Omega, 2020, 5, 10359-10365.	1.6	11
32	A Blinking Mesoporous TiO _{2â^'<i>x</i>} Composed of Nanosized Anatase with Unusually Longâ€Lived Trapped Charge Carriers. Angewandte Chemie - International Edition, 2020, 59, 15000-15007.	7.2	31
33	A Blinking Mesoporous TiO _{2â^'<i>x</i>} Composed of Nanosized Anatase with Unusually Longâ€Lived Trapped Charge Carriers. Angewandte Chemie, 2020, 132, 15110-15117.	1.6	4
34	Fe3C nanoparticles-loaded 3D nanoporous N-doped carbon: A highly efficient electrocatalyst for oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 21506-21517.	3.8	16
35	Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18030-18038.	5. 2	64
36	CO ₂ â€Mediated H ₂ Storageâ€Release with Nanostructured Catalysts: Recent Progresses, Challenges, and Perspectives. Advanced Energy Materials, 2019, 9, 1901158.	10.2	47

#	Article	IF	Citations
37	Hollow Spherical (Co, Zn)/N, S-Doped Carbons: Efficient Catalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 18912-18925.	3.2	32
38	Contamination Mitigation Strategy for Ultra-Low Energy Electron Microscopy and Spectroscopy. Microscopy and Microanalysis, 2019, 25, 500-501.	0.2	1
39	Highly sensitive and selective gas-phase ethanolamine sensor by doping sulfur into nanostructured ZnO. Sensors and Actuators B: Chemical, 2019, 296, 126633.	4.0	28
40	Nanoporous Heteroatom-Doped Carbons Derived from Cotton Waste: Efficient Hydrazine Oxidation Electrocatalysts. ACS Applied Energy Materials, 2019, 2, 2313-2323.	2.5	29
41	Harvesting waste heat energy by promoting H+-ion concentration difference with a fuel cell structure. Nano Energy, 2019, 57, 101-107.	8.2	18
42	Heteroatomâ€Doped Carbon Materials for Hydrazine Oxidation. Advanced Materials, 2019, 31, e1804394.	11.1	80
43	Deriving Efficient Porous Heteroatomâ€Doped Carbon Electrocatalysts for Hydrazine Oxidation from Transition Metal Ionsâ€Coordinated Casein. Advanced Functional Materials, 2019, 29, 1808486.	7.8	31
44	Ultra-absorbent hybrid hydrogel based on alginate and SiO2 microspheres: A high-water-content system for removal of methylene blue. Journal of Molecular Liquids, 2019, 276, 204-213.	2.3	44
45	Template-free synthesis of highly selective amorphous aluminosilicate catalyst for toluene alkylation. Applied Catalysis A: General, 2018, 556, 155-159.	2.2	3
46	Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. Journal of Cleaner Production, 2018, 171, 482-490.	4.6	139
47	Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Applied Catalysis B: Environmental, 2018, 225, 30-39.	10.8	115
48	Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale, 2018, 10, 1704-1715.	2.8	48
49	Mesoporous TiO ₂ Comprising Small, Highly Crystalline Nanoparticles for Efficient CO ₂ Reduction by H ₂ O. ACS Sustainable Chemistry and Engineering, 2018, 6, 531-540.	3.2	52
50	Facile synthesis of efficient and selective Ti-containing mesoporous silica catalysts for toluene oxidation. Molecular Catalysis, 2018, 444, 34-41.	1.0	19
51	One-Pot Hydrothermal Synthesis of Benzalkonium-Templated Mesostructured Silica Antibacterial Agents. Journal of the American Chemical Society, 2018, 140, 13534-13537.	6.6	41
52	Efficient Catalysts for Cyclohexane Dehydrogenation Synthesized by Mo-Promoted Growth of 3D Block Carbon Coupled with Mo ₂ C. ACS Omega, 2018, 3, 10773-10780.	1.6	14
53	Ta-Doped porous TiO ₂ nanorod arrays by substrate-assisted synthesis: efficient photoelectrocatalysts for water oxidation. Nanoscale, 2018, 10, 19367-19374.	2.8	15
54	Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation. Frontiers of Chemical Science and Engineering, 2018, 12, 329-338.	2.3	17

#	Article	IF	Citations
55	Metal-organic framework-derived Fe3C@NC nanohybrids as highly-efficient oxygen reduction electrocatalysts in both acidic and basic media. Journal of Electroanalytical Chemistry, 2018, 823, 755-764.	1.9	18
56	Mesoporous Graphitic Carbon Nitrides Decorated with Cu Nanoparticles: Efficient Photocatalysts for Degradation of Tartrazine Yellow Dye. Nanomaterials, 2018, 8, 636.	1.9	16
57	A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction. Scientific Reports, 2017, 7, 43366.	1.6	31
58	Heteroatomâ€Doped Carbon Materials for Electrocatalysis. Chemistry - A European Journal, 2017, 23, 10703-10713.	1.7	64
59	Formic acid dehydrogenation over Pd NPs supported on amine-functionalized SBA-15 catalysts: structure–activity relationships. Journal of Materials Chemistry A, 2017, 5, 16150-16161.	5.2	68
60	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
61	From ionic liquid-modified cellulose nanowhiskers to highly active metal-free nanostructured carbon catalysts for the hydrazine oxidation reaction. Journal of Materials Chemistry A, 2017, 5, 1066-1077.	5.2	40
62	Hollow Mesoporous Carbon Microparticles and Micromotors with Single Holes Templated by Colloidal Silicaâ€Assisted Gas Bubbles. Small, 2017, 13, 1700256.	5.2	13
63	Copperâ€Decorated Microsized Nanoporous Titanium Dioxide Photocatalysts for Carbon Dioxide Reduction by Water. ChemCatChem, 2017, 9, 3054-3062.	1.8	44
64	Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3â^'xS4 coupled Ni3S2 nanosheet arrays. Nano Energy, 2017, 35, 161-170.	8.2	339
65	Nâ€, Oâ€, and Sâ€Tridoped Carbonâ€Encapsulated Co ₉ S ₈ Nanomaterials: Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1606585.	7.8	365
66	Novel nanoporous N-doped carbon-supported ultrasmall Pd nanoparticles: Efficient catalysts for hydrogen storage and release. Applied Catalysis B: Environmental, 2017, 203, 820-828.	10.8	80
67	Amine/Hydrido Bifunctional Nanoporous Silica with Small Metal Nanoparticles Made Onsite: Efficient Dehydrogenation Catalyst. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36-41.	4.0	13
68	Sol-gel synthesis of new TiO 2 /activated carbon photocatalyst and its application for degradation of tetracycline. Ceramics International, 2017, 43, 4411-4418.	2.3	135
69	Hierarchically Porous Co3C/Co-N-C/G Modified Graphitic Carbon: A Trifunctional Corrosion-Resistant Electrode for Oxygen Reduction, Hydrogen Evolution and Oxygen Evolution Reactions. Electrochimica Acta, 2017, 257, 40-48.	2.6	58
70	Frontispiece: Heteroatomâ€Đoped Carbon Materials for Electrocatalysis. Chemistry - A European Journal, 2017, 23, .	1.7	0
71	Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 12370-12373.	6.6	335
72	Hybrid Materials and Nanocomposites as Multifunctional Biomaterials. Current Pharmaceutical Design, 2017, 23, 3794-3813.	0.9	32

#	Article	IF	Citations
73	Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheetâ€Built, Hollow Ni ₃ S ₂ â€Based Electrocatalyst. Advanced Functional Materials, 2016, 26, 4839-4847.	7.8	438
74	Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18891-18903.	4.0	36
75	Hierarchically Selfâ€Assembled Star‧haped ZnO Microparticles for Electrochemical Sensing of Amines. Chemistry - A European Journal, 2016, 22, 8068-8073.	1.7	9
76	In Situ Growth and Characterization of Metal Oxide Nanoparticles within Polyelectrolyte Membranes. Angewandte Chemie, 2016, 128, 11694-11699.	1.6	2
77	Unique Electronic Structure in a Porous Gaâ€In Bimetallic Oxide Nanoâ€Photocatalyst with Atomically Thin Pore Walls. Angewandte Chemie, 2016, 128, 11614-11618.	1.6	5
78	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	23.0	2,051
79	Synthesis and application of N–S-doped mesoporous carbon obtained from nanocasting method using bone char as heteroatom precursor and template. Chemical Engineering Journal, 2016, 300, 54-63.	6.6	58
80	Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces. International Journal of Biological Macromolecules, 2016, 91, 329-337.	3.6	18
81	Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts. Accounts of Chemical Research, 2016, 49, 1873-1883.	7.6	191
82	Unique Electronic Structure in a Porous Gaâ€In Bimetallic Oxide Nanoâ€Photocatalyst with Atomically Thin Pore Walls. Angewandte Chemie - International Edition, 2016, 55, 11442-11446.	7.2	40
83	In Situ Growth and Characterization of Metal Oxide Nanoparticles within Polyelectrolyte Membranes. Angewandte Chemie - International Edition, 2016, 55, 11522-11527.	7.2	14
84	Electrocatalysis: Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheetâ€Built, Hollow Ni ₃ S ₂ â€Based Electrocatalyst (Adv. Funct. Mater. 27/2016). Advanced Functional Materials, 2016, 26, 4999-4999.	7.8	10
85	N- and O-doped mesoporous carbons derived from rice grains: efficient metal-free electrocatalysts for hydrazine oxidation. Chemical Communications, 2016, 52, 13588-13591.	2.2	45
86	The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nature Materials, 2016, 15, 1003-1009.	13.3	687
87	Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes. ACS Sustainable Chemistry and Engineering, 2016, 4, 1058-1068.	3.2	234
88	Improving the dissolution of fenofibrate with yeast cell-derived hollow core/shell carbon microparticles. RSC Advances, 2016, 6, 30226-30233.	1.7	2
89	Synthesis and Gas-sensing Performance of Column-shaped Zinc Oxide Doped with-graphene. Materials Today: Proceedings, 2016, 3, 345-349.	0.9	8
90	Controlling cell growth with tailorable 2D nanoholes arrays. Journal of Colloid and Interface Science, 2016, 466, 150-161.	5.0	10

#	Article	IF	CITATIONS
91	Fibrous porous carbon electrocatalysts for hydrazine oxidation by using cellulose filter paper as precursor and self-template. Carbon, 2016, 102, 97-105.	5.4	28
92	Micro–mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants. Journal of Materials Chemistry A, 2016, 4, 596-604.	5.2	42
93	Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER). Carbohydrate Polymers, 2016, 137, 719-725.	5.1	17
94	Bicinchoninic acid-based colorimetric chemosensor for detection of low concentrations of cyanide. Sensors and Actuators B: Chemical, 2016, 222, 112-119.	4.0	12
95	Frontispiece: Coupling Mo ₂ C with Nitrogenâ€Rich Nanocarbon Leads to Efficient Hydrogenâ€Evolution Electrocatalytic Sites. Angewandte Chemie - International Edition, 2015, 54, .	7.2	4
96	Coupling Mo ₂ C with Nitrogenâ€Rich Nanocarbon Leads to Efficient Hydrogenâ€Evolution Electrocatalytic Sites. Angewandte Chemie - International Edition, 2015, 54, 10752-10757.	7.2	674
97	Yeast Cells-Derived Hollow Core/Shell Heteroatom-Doped Carbon Microparticles for Sustainable Electrocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 1978-1986.	4.0	49
98	Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Materials for Renewable and Sustainable Energy, 2015, 4, 1.	1.5	68
99	Glutathione-triggered release of model drug molecules from mesoporous silica nanoparticles via a non-redox process. RSC Advances, 2015, 5, 28836-28839.	1.7	11
100	A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions. Chemical Communications, 2015, 51, 8496-8499.	2.2	54
101	Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590.	18.7	906
102	Nanostructured polymers with high surface area using inorganic templates for the efficient extraction of anionic dyes from solutions. Chemical Communications, 2015, 51, 16135-16138.	2.2	13
103	High-Index Faceted Ni ₃ S ₂ Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting. Journal of the American Chemical Society, 2015, 137, 14023-14026.	6.6	1,622
104	Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material. Applied Surface Science, 2015, 357, 221-228.	3.1	97
105	Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7, 45-49.	6.6	637
106	Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chemical Engineering Journal, 2015, 260, 291-299.	6.6	570
107	Functionalized Mesoporous Silica Nanoparticles for Glucose―and pHâ€5timulated Release of Insulin. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 616-623.	0.6	18
108	Low Energy TEM Characterizations of Ordered Mesoporous Silica-Based Nanocomposite Materials for Catalytic Applications. Microscopy and Microanalysis, 2014, 20, 1900-1901.	0.2	1

#	Article	IF	CITATIONS
109	Ultrasmall palladium nanoparticles supported on amine-functionalized SBA-15 efficiently catalyze hydrogen evolution from formic acid. Journal of Materials Chemistry A, 2014, 2, 20444-20449.	5.2	101
110	Cobaltâ€Embedded Nitrogenâ€Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values. Angewandte Chemie - International Edition, 2014, 53, 4372-4376.	7.2	857
111	Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: Optimization using RSM and methylene blue adsorption. Journal of Analytical and Applied Pyrolysis, 2014, 105, 166-176.	2.6	123
112	Nanostructured TiO2 Catalyzed Oxidations of Caffeine and Isocaffeine and Their Cytotoxicity and Genotoxicity Towards Ovarian Cancer Cells. BioNanoScience, 2014, 4, 27-36.	1.5	9
113	Reductive Deprotection of Monolayer Protected Nanoclusters: An Efficient Route to Supported Ultrasmall Au Nanocatalysts for Selective Oxidation. Small, 2014, 10, 1473-1478.	5.2	61
114	One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution. Journal of Materials Chemistry A, 2014, 2, 4682.	5.2	71
115	N-doped ordered mesoporous carbons with improved charge storage capacity by tailoring N-dopant density with solvent-assisted synthesis. Journal of Materials Chemistry A, 2014, 2, 15181-15190.	5.2	50
116	Polypyrroleâ€Derived Nitrogen and Oxygen Coâ€Doped Mesoporous Carbons as Efficient Metalâ€Free Electrocatalyst for Hydrazine Oxidation. Advanced Materials, 2014, 26, 6510-6516.	11.1	114
117	Dendritic Silica Nanomaterials (KCC-1) with Fibrous Pore Structure Possess High DNA Adsorption Capacity and Effectively Deliver Genes In Vitro. Langmuir, 2014, 30, 10886-10898.	1.6	88
118	N-, O-, and S-Tridoped Nanoporous Carbons as Selective Catalysts for Oxygen Reduction and Alcohol Oxidation Reactions. Journal of the American Chemical Society, 2014, 136, 13554-13557.	6.6	317
119	Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catalysis Science and Technology, 2014, 4, 2023-2030.	2.1	268
120	Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials. Applied Catalysis A: General, 2014, 473, 21-30.	2.2	34
121	Hierarchical macrochanneled layered titanates with "house-of-cards―type titanate nanosheets and their superior photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 7690.	5.2	16
122	New polyoxomolybdate compounds synthesized in situ using ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate as green solvent. New Journal of Chemistry, 2013, 37, 2894.	1.4	17
123	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	4.5	1,948
124	Efficient Noble Metal-Free (Electro)Catalysis of Water and Alcohol Oxidations by Zinc–Cobalt Layered Double Hydroxide. Journal of the American Chemical Society, 2013, 135, 17242-17245.	6.6	381
125	Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chemical Communications, 2013, 49, 7522.	2.2	220
126	A self-cleaning porous TiO ₂ â€"Ag coreâ€"shell nanocomposite material for surface-enhanced Raman scattering. Chemical Communications, 2013, 49, 382-384.	2.2	84

#	Article	IF	CITATIONS
127	Efficient Tertiary Amine/Weak Acid Bifunctional Mesoporous Silica Catalysts for Michael Addition Reactions. ChemCatChem, 2013, 5, 910-919.	1.8	11
128	Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodology. Journal of Analytical and Applied Pyrolysis, 2013, 101, 53-60.	2.6	81
129	Nanocrafting Iron–Cobalt for Fischer–Tropsch Catalysis. ChemCatChem, 2013, 5, 1698-1700.	1.8	4
130	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	13.3	2,326
131	Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons. Journal of the American Chemical Society, 2013, 135, 7823-7826.	6.6	661
132	Biocompatibility of Calcined Mesoporous Silica Particles with Ventricular Myocyte Structure and Function. Chemical Research in Toxicology, 2013, 26, 26-36.	1.7	8
133	Lung toxicities of core–shell nanoparticles composed of carbon, cobalt, and silica. International Journal of Nanomedicine, 2013, 8, 1223.	3.3	4
134	Semiconductor and Plasmonic Photocatalysis for Selective Organic Transformations. Current Organic Chemistry, 2013, 17, 1274-1287.	0.9	11
135	Biocompatibility of Mesoporous Silica Nanoparticles. Chemical Research in Toxicology, 2012, 25, 2265-2284.	1.7	341
136	Nanosized gold-catalyzed selective oxidation of alkyl-substituted benzenes and n-alkanes. Applied Catalysis A: General, 2012, 435-436, 19-26.	2.2	47
137	Mesoporous silica and organosilica materials— Review of their synthesis and organic functionalization. Canadian Journal of Chemistry, 2012, 90, 1015-1031.	0.6	74
138	In vitro biocompatibility of calcined mesoporous silica particles and fetal blood cells. International Journal of Nanomedicine, 2012, 7, 3111.	3.3	13
139	A new layered metal–organic framework as a promising heterogeneous catalyst for olefin epoxidation reactions. Chemical Communications, 2012, 48, 6541.	2.2	151
140	Edgeâ∈Planeâ∈Rich Nitrogenâ∈Doped Carbon Nanoneedles and Efficient Metalâ∈Free Electrocatalysts. Angewandte Chemie - International Edition, 2012, 51, 7171-7175.	7.2	83
141	Core–Shell–Shell Microsphere Catalysts Containing Au Nanoparticles for Styrene Epoxidation. Topics in Catalysis, 2012, 55, 587-594.	1.3	26
142	Nearâ∈IR Absorbing Solar Cell Sensitized With Bacterial Photosynthetic Membranes. Photochemistry and Photobiology, 2012, 88, 1467-1472.	1.3	26
143	Assembling Nanostructures for Effective Catalysis: Supported Palladium Nanoparticle Multicores Coated by a Hollow and Nanoporous Zirconia Shell. ChemSusChem, 2012, 5, 132-139.	3.6	34
144	Noble Metalâ€Free Oxidative Electrocatalysts: Polyaniline and Co(II)â€Polyaniline Nanostructures Hosted in Nanoporous Silica. Advanced Materials, 2012, 24, 1878-1883.	11.1	47

#	Article	IF	Citations
145	Chiral Nematic Mesoporous Carbons from Selfâ€Assembled Nanocrystalline Cellulose. Angewandte Chemie - International Edition, 2012, 51, 2008-2010.	7.2	19
146	Aminotroponate/Aminotroponiminate Zinc Complexes Functionalized Mesoporous Silica Catalysts for Intramolecular Hydroamination of Non-Activated Alkenes with Varied Steric and Electronic Properties. ACS Catalysis, 2011, 1, 736-750.	5.5	27
147	Au/SBA-15-Based Robust and Convenient-to-Use Nanopowder Material for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 22810-22817.	1.5	28
148	Self-Assembled TiO ₂ with Increased Photoelectron Production, and Improved Conduction and Transfer: Enhancing Photovoltaic Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	4.0	25
149	Epoxide Ring-Opening Reactions with Mesoporous Silica-Supported Fe(III) Catalysts. ACS Catalysis, 2011, 1, 502-510.	5.5	72
150	Improving the Adsorption and Release Capacity of Organic-Functionalized Mesoporous Materials to Drug Molecules with Temperature and Synthetic Methods. Journal of Physical Chemistry C, 2011, 115, 13135-13150.	1.5	51
151	Silica–Dendrimer Core–Shell Microspheres with Encapsulated Ultrasmall Palladium Nanoparticles: Efficient and Easily Recyclable Heterogeneous Nanocatalysts. Langmuir, 2011, 27, 14408-14418.	1.6	58
152	Improving Microstructured TiO ₂ Photoanodes for Dye Sensitized Solar Cells by Simple Surface Treatment. Advanced Energy Materials, 2011, 1, 879-887.	10.2	35
153	Bifunctional Mesoporous Silica Catalyst for C–C Bond Forming Tandem Reactions. European Journal of Inorganic Chemistry, 2011, 2011, 3174-3182.	1.0	39
154	In Vitro Study and Biocompatibility of Calcined Mesoporous Silica Microparticles in Mouse Lung. Toxicological Sciences, 2011, 122, 86-99.	1.4	24
155	Entrapping Flavin ontaining Monooxygenase on Corrugated Silica Nanospheres and their Recyclable Biocatalytic Activities. ChemCatChem, 2010, 2, 1004-1010.	1.8	7
156	Substituent―and Catalystâ€Dependent Selectivity to Aldol or Nitrostyrene Products in a Heterogeneous Baseâ€Catalyzed Henry Reaction. ChemCatChem, 2010, 2, 61-66.	1.8	24
157	Recyclable Dirhodium Catalysts Embedded in Nanoporous Surfaceâ€Functionalized Organosilica Hosts for Carbenoidâ€Mediated Cyclopropanation Reactions. ChemCatChem, 2010, 2, 1461-1466.	1.8	25
158	Poly(allylamine)-Stabilized Colloidal Copper Nanoparticles: Synthesis, Morphology, and Their Surface-Enhanced Raman Scattering Properties. Langmuir, 2010, 26, 7469-7474.	1.6	104
159	Controlled Synthesis of Waterâ€Dispersible Faceted Crystalline Copper Nanoparticles and Their Catalytic Properties. Chemistry - A European Journal, 2010, 16, 10735-10743.	1.7	92
160	Continuous Henry reaction to a specific product over nanoporous silica-supported amine catalysts on fixed bed reactor. Applied Catalysis A: General, 2010, 389, 19-26.	2.2	18
161	Mesoporous Silica Microparticles Enhance the Cytotoxicity of Anticancer Platinum Drugs. ACS Nano, 2010, 4, 789-794.	7.3	133
162	Trimming Nanostructured Walls While Fluorinating their Surfaces: A Route to Making and Widening Pores of Nanoporous Materials and Efficient Catalysts. Chemistry of Materials, 2010, 22, 4950-4963.	3.2	9

#	Article	IF	CITATIONS
163	Biocompatibility of Calcined Mesoporous Silica Particles with Cellular Bioenergetics in Murine Tissues. Chemical Research in Toxicology, 2010, 23, 1796-1805.	1.7	33
164	Isomer-Dependent Adsorption and Release of Cis <i>-</i> and Trans-platin Anticancer Drugs by Mesoporous Silica Nanoparticles. Langmuir, 2010, 26, 8914-8924.	1.6	32
165	Silica nanosphere-supported shaped Pd nanoparticles encapsulated with nanoporous silica shell: Efficient and recyclable nanocatalysts. Journal of Materials Chemistry, 2010, 20, 7834.	6.7	7 5
166	Preparation of antibody-conjugated gold nanoparticles. Materials Letters, 2009, 63, 1876-1879.	1.3	56
167	Efficient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups on nanoporous silica. Journal of Catalysis, 2009, 265, 131-140.	3.1	62
168	Controlling adsorption and release of drug and small molecules byÂorganic functionalization of mesoporous materials. Adsorption, 2009, 15, 287-299.	1.4	14
169	Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study. Journal of Solid State Chemistry, 2009, 182, 1649-1660.	1.4	140
170	Aminotroponiminate–Zinc Complexâ€Functionalized Mesoporous Materials: Efficient and Recyclable Intramolecular Hydroamination Catalysts. ChemCatChem, 2009, 1, 365-368.	1.8	21
171	Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chemical Research in Toxicology, 2009, 22, 1869-1880.	1.7	117
172	Recent advances in nanostructured chemosensors and biosensors. Analyst, The, 2009, 134, 1980.	1.7	163
173	Accelerated Oxidation of Epinephrine by Silica Nanoparticles. Langmuir, 2009, 25, 10183-10188.	1.6	37
174	Solvent-washable polymer templated synthesis of mesoporous materials and solid-acid nanocatalysts in one-pot. Chemical Communications, 2009, , 6201.	2.2	7
175	Controlled Synthesis of the Henry Reaction Products: Nitroalcohol Versus Nitrostyrene by a Simple Change of Amino-Groups of Aminofunctionalized Nanoporous Catalysts. Catalysis Letters, 2008, 126, 142-148.	1.4	30
176	Selective, efficient nanoporous catalysts for nitroaldol condensation: Co-placement of multiple site-isolated functional groups on mesoporous materials. Journal of Molecular Catalysis A, 2008, 288, 1-13.	4.8	31
177	Cytotoxicity of mesoporous silica nanomaterials. Journal of Inorganic Biochemistry, 2008, 102, 1416-1423.	1.5	206
178	Optimizing Acidâ^'Base Bifunctional Mesoporous Catalysts for the Henry Reaction: Effects of the Surface Density and Site Isolation of Functional Groups. Langmuir, 2008, 24, 14306-14320.	1.6	82
179	Tuning Metal Nanostructures in Mesoporous Silica by a Simple Change of Metal Complexes and by Reduction with Grafted Imines and Hemiaminals. Journal of Physical Chemistry C, 2008, 112, 9996-10003.	1.5	51
180	Corrugated and nanoporous silica microspheres: synthesis by controlled etching, and improving their chemical adsorption and application in biosensing. Journal of Materials Chemistry, 2008, 18, 5604.	6.7	22

#	Article	IF	Citations
181	Toward Efficient Nanoporous Catalysts:Â Controlling Site-Isolation and Concentration of Grafted Catalytic Sites on Nanoporous Materials with Solvents and Colorimetric Elucidation of Their Site-Isolation. Journal of the American Chemical Society, 2008, 130, 218-228.	6.6	134
182	Mesoporous Silica Nanoparticles Inhibit Cellular Respiration. Nano Letters, 2008, 8, 1517-1526.	4.5	104
183	EFFICIENT AND SELECTIVE NANOPOROUS CATALYSTS BY PLACING MULTIPLE SITE-ISOLATED FUNCTIONAL GROUPS ON MESOPOROUS MATERIALS. , 2008, , .		0
184	Tailored Coreâ^'Shellâ^'Shell Nanostructures:  Sandwiching Gold Nanoparticles between Silica Cores and Tunable Silica Shells. Langmuir, 2007, 23, 9455-9462.	1.6	81
185	Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials. Angewandte Chemie - International Edition, 2007, 46, 2879-2882.	7.2	189
186	Hybrid Periodic Mesoporous Organosilicas. Advanced Functional Materials, 2005, 15, 1696-1702.	7.8	51
187	Synthesis of Gold Nanoparticles via Electroless Deposition in SBA-15. Chemistry of Materials, 2005, 17, 2481-2483.	3.2	55
188	Novel Route to Periodic Mesoporous Aminosilicas, PMAs:Â Ammonolysis of Periodic Mesoporous Organosilicas. Journal of the American Chemical Society, 2003, 125, 11662-11673.	6.6	65
189	Synthesis and characterization of methyl- and vinyl-functionalized ordered mesoporous silicas with high organic content. Studies in Surface Science and Catalysis, 2002, 141, 197-204.	1.5	17
190	Recent developments in the synthesis and chemistry of periodic mesoporous organosilicas. Studies in Surface Science and Catalysis, 2002, , 1-26.	1.5	20
191	Synthesis and Properties of 1,3,5-Benzene Periodic Mesoporous Organosilica (PMO):Â Novel Aromatic PMO with Three Point Attachments and Unique Thermal Transformations. Journal of the American Chemical Society, 2002, 124, 13886-13895.	6.6	146
192	Synthesis and characterization of ordered mesoporous silicas with high loadings of methyl groups. Journal of Materials Chemistry, 2002, 12, 3452-3457.	6.7	40
193	Periodic Mesoporous Organosilica with Large Cagelike Pores. Chemistry of Materials, 2002, 14, 1903-1905.	3.2	158
194	Metamorphosis of Ordered Mesopores to Micropores:  Periodic Silica with Unprecedented Loading of Pendant Reactive Organic Groups Transforms to Periodic Microporous Silica with Tailorable Pore Size. Journal of the American Chemical Society, 2002, 124, 6383-6392.	6.6	118
195	Novel Bifunctional Periodic Mesoporous Organosilicas, BPMOs:Â Synthesis, Characterization, Properties and in-Situ Selective Hydroborationâ Alcoholysis Reactions of Functional Groups. Journal of the American Chemical Society, 2001, 123, 8520-8530.	6.6	260
196	Title is missing!. Journal of Materials Chemistry, 2001, 11, 3202-3206.	6.7	95
197	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. Materials Research Society Symposia Proceedings, 2001, 707, 551.	0.1	1
198	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0

#	Article	IF	Citations
199	Sequential Hydroboration–Alcoholysis and Epoxidation–Ring Opening Reactions of Vinyl Groups in Mesoporous Vinylsilica. Advanced Functional Materials, 2001, 11, 447.	7.8	43
200	Metamorphic Channels in Periodic Mesoporous Methylenesilica. Angewandte Chemie - International Edition, 2000, 39, 1808-1811.	7.2	230
201	Writing on the Wall with a New Synthetic Quill. Chemistry - A European Journal, 2000, 6, 2507-2511.	1.7	128
202	New nanocomposites: putting organic function "inside―the channel walls of periodic mesoporous silica. Journal of Materials Chemistry, 2000, 10, 1751-1755.	6.7	166
203	Periodic Mesoporous Organosilicas (PMOs): Nanostructured Organic-Inorganic Hybrid Materials. Materials Research Society Symposia Proceedings, 2000, 628, 1.	0.1	3
204	Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 1999, 402, 867-871.	13.7	1,686
205	Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry â€inside' the channel walls of hexagonal mesoporous silica. Chemical Communications, 1999, , 2539-2540.	2.2	375