Jonas Olof Sommar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741439/publications.pdf

Version: 2024-02-01

84 papers 5,308 citations

39 h-index 91712 69 g-index

99 all docs 99 docs citations 99 times ranked

2725 citing authors

#	Article	IF	Citations
1	A whole-air relaxed eddy accumulation measurement system for sampling vertical vapour exchange of elemental mercury. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19940.	0.8	24
2	Sources and Transformation Mechanisms of Atmospheric Particulate Bound Mercury Revealed by Mercury Stable Isotopes. Environmental Science & Environmen	4.6	11
3	Mercury Isotope Fractionation during the Exchange of Hg(0) between the Atmosphere and Land Surfaces: Implications for Hg(0) Exchange Processes and Controls. Environmental Science & Emp; Technology, 2022, 56, 1445-1457.	4.6	11
4	Canopy-Level Flux and Vertical Gradients of Hg ^O Stable Isotopes in Remote Evergreen Broadleaf Forest Show Year-Around Net Hg ^O Deposition. Environmental Science & amp; Technology, 2022, 56, 5950-5959.	4.6	10
5	Characteristics, Accumulation, and Potential Health Risks of Antimony in Atmospheric Particulate Matter. ACS Omega, 2021, 6, 9460-9470.	1.6	26
6	Quantification of Atmospheric Mercury Deposition to and Legacy Re-emission from a Subtropical Forest Floor by Mercury Isotopes. Environmental Science & Environmental Science & 2021, 55, 12352-12361.	4.6	19
7	Critical Observations of Gaseous Elemental Mercury Airâ€Sea Exchange. Global Biogeochemical Cycles, 2021, 35, e2020GB006742.	1.9	7
8	Chemistry and Isotope Fractionation of Divalent Mercury during Aqueous Reduction Mediated by Selected Oxygenated Organic Ligands. Environmental Science & Environmental Science & 2021, 55, 13376-13386.	4.6	6
9	Stable Mercury Isotope Transition during Postdepositional Decomposition of Biomass in a Forest Ecosystem over Five Centuries. Environmental Science & Ecosystem over Five Centuries. Environmental Science & Ecosystem over Five Centuries.	4.6	38
10	Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg0). Science of the Total Environment, 2020, 721, 137648.	3.9	43
11	Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science of the Total Environment, 2020, 737, 139619.	3.9	48
12	Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment. Environment International, 2019, 131, 104971.	4.8	22
13	Process factors driving dynamic exchange of elemental mercury vapor over soil in broadleaf forest ecosystems. Atmospheric Environment, 2019, 219, 117047.	1.9	27
14	Assessing Air–Surface Exchange and Fate of Mercury in a Subtropical Forest Using a Novel Passive Exchange-Meter Device. Environmental Science & Exchange (2019, 53, 4869-4879).	4.6	6
15	Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. Environmental Science & Environmenta	4.6	107
16	Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland. Atmospheric Environment, 2018, 172, 16-25.	1.9	18
17	Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environmental Pollution, 2018, 242, 718-727.	3.7	49
18	Lidar mapping of atmospheric atomic mercury in the Wanshan area, China. Environmental Pollution, 2018, 240, 353-358.	3.7	16

#	Article	IF	Citations
19	Using Mercury Isotopes To Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environmental Science & Eastern Tibetan Plateau. Environmental Science & Eastern Tibetan Plateau.	4.6	102
20	Seasonal variations in metallic mercury (Hg& t;sup>0& t;/sup>) vapor exchange over biannual wheat–corn rotation cropland in the North China Plain. Biogeosciences, 2016, 13, 2029-2049.	1.3	23
21	A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux. Atmospheric Measurement Techniques, 2016, 9, 509-524.	1.2	24
22	Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environmental Science & Environmental Science & 2016, 50, 9262-9269.	4.6	139
23	Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Environmental Science & 2016, 50, 9232-9241.	4.6	143
24	Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmospheric Chemistry and Physics, 2016, 16, 11125-11143.	1.9	60
25	Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 2016, 16, 12861-12873.	1.9	82
26	Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 4451-4480.	1.9	101
27	Mercury vapor air–surface exchange measured by collocated micrometeorological and enclosure methods – Part I: Data comparability and method characteristics. Atmospheric Chemistry and Physics, 2015, 15, 685-702.	1.9	47
28	Mercury vapor air–surface exchange measured by collocated micrometeorological and enclosure methods – Part II: Bias and uncertainty analysis. Atmospheric Chemistry and Physics, 2015, 15, 5359-5376.	1.9	34
29	Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill. Atmospheric Environment, 2013, 79, 540-545.	1.9	14
30	Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Scientific Reports, 2013, 3, 3322.	1.6	126
31	Emission characteristics and air–surface exchange of gaseous mercury at the largest active landfill in Asia. Atmospheric Environment, 2013, 79, 188-197.	1.9	30
32	Field Approaches to Measure Hg Exchange Between Natural Surfaces and the Atmosphereâ€"A Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 1657-1739.	6.6	38
33	Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China. Atmospheric Chemistry and Physics, 2012, 12, 6207-6218.	1.9	35
34	Environmental geochemistry of an active Hg mine in Xunyang, Shaanxi Province, China. Applied Geochemistry, 2012, 27, 2280-2288.	1.4	53
35	Novel Dynamic Flux Chamber for Measuring Air–Surface Exchange of Hg ^o from Soils. Environmental Science & Technology, 2012, 46, 8910-8920.	4.6	49
36	A review of studies on atmospheric mercury in China. Science of the Total Environment, 2012, 421-422, 73-81.	3.9	188

#	Article	IF	CITATIONS
37	Air–sea exchange of volatile mercury in the North Atlantic Ocean. Marine Chemistry, 2011, 125, 1-7.	0.9	58
38	Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean. Atmospheric Chemistry and Physics, 2010, 10, 5031-5045.	1.9	42
39	Influence of Eutrophication on the Distribution of Total Mercury and Methylmercury in Hydroelectric Reservoirs. Journal of Environmental Quality, 2010, 39, 1624-1635.	1.0	26
40	Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (<i>Oryza sativa) Tj ETQq0 0 0 rg 2010, 58, 4951-4958.</i>	BT /Overlo 2.4	ock 10 Tf 50 183
41	Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. Journal of Geophysical Research, 2010, 115, .	3.3	104
42	Atmospheric mercury at mediterranean coastal stations. Environmental Fluid Mechanics, 2008, 8, 101-116.	0.7	40
43	Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Marine Chemistry, 2008, 110, 190-194.	0.9	121
44	Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005. Atmospheric Environment, 2008, 42, 8382-8388.	1.9	46
45	A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics, 2008, 8, 1445-1482.	1.9	426
46	Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Ålesund (79° N), Svalbard, spring 2002. Atmospheric Chemistry and Physics, 2007, 7, 151-166.	1.9	58
47	New insights into the Jahn–Teller effect in NO3via the dark Ã2E″ state. Physica Scripta, 2006, 73, C64-C70.	1.2	29
48	Emissions, dispersion and human exposure of mercury from a Swedish chlor-alkali plant. Atmospheric Environment, 2005, 39, 7451-7458.	1.9	21
49	Application of Relaxed Eddy Accumulation Technique to Quantify HgO Fluxes Over Modified Soil Surfaces. Water, Air, and Soil Pollution, 2005, 167, 331-352.	1.1	23
50	Cavity ringdown spectrum of the forbidden $A \ F \ a = 32 \ a + 1 \ A \ a \le 2 \ a$ transition of NO3: Evidence for static Jahnâ = "Teller distortion in the $A \ f$ state. Journal of Chemical Physics, 2005, 122, 224305.	1.2	28
51	Distribution of atmospheric mercury species in Northern Europe: final results from the MOE project. Atmospheric Environment, 2003, 37, 9-20.	1.9	67
52	Mercury speciation in the marine boundary layer along a 6000km cruise path around the Mediterranean Sea. Atmospheric Environment, 2003, 37, 63-71.	1.9	124
53	Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment, 2003, 37, 73-84.	1.9	126
54	Profiles of dissolved gaseous mercury concentration in the Mediterranean seawater. Atmospheric Environment, 2003, 37, 85-92.	1.9	48

#	Article	IF	Citations
55	Atmospheric mercury near a chlor-alkali plant in Sweden. Science of the Total Environment, 2003, 304, 29-41.	3.9	52
56	Distribution of TPM in Northern Europe. Science of the Total Environment, 2003, 304, 53-59.	3.9	32
57	Total gaseous mercury in the atmosphere of Guiyang, PR China. Science of the Total Environment, 2003, 304, 61-72.	3.9	100
58	Interpretation of mercury depletion events observed at Ny-Ãlesund, Svalbard during spring 2002. European Physical Journal Special Topics, 2003, 107, 1353-1356.	0.2	7
59	Arctic mercury depletion events at two elevations as observed at the Zeppelin Station and Dirigibile Italia, Ny-Ãlesund, spring 2002. European Physical Journal Special Topics, 2003, 107, 151-154.	0.2	10
60	Exchange flux of total gaseous mercury between air and natural water surfaces in summer season. Science in China Series D: Earth Sciences, 2002, 45, 211-220.	0.9	11
61	Reply to discussion on "Total gaseous mercury exchange between air and water at river and sea surfaces in swedish coastal regionsâ€. Atmospheric Environment, 2002, 36, 1405-1406.	1.9	1
62	Comparison of procedures for measurements of dissolved gaseous mercury in seawater performed on a Mediterranean cruise. Analytical and Bioanalytical Chemistry, 2002, 374, 1002-1008.	1.9	30
63	Title is missing!. Water, Air, and Soil Pollution, 2002, 139, 311-324.	1.1	97
64	Intercomparison of methods for sampling and analysis of atmospheric mercury species. Atmospheric Environment, 2001, 35, 3007-3017.	1.9	154
65	Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmospheric Environment, 2001, 35, 3019-3025.	1.9	115
66	Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions. Atmospheric Environment, 2001, 35, 3027-3038.	1.9	94
67	Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. Atmospheric Environment, 2001, 35, 3039-3047.	1.9	120
68	A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury. Atmospheric Environment, 2001, 35, 3049-3054.	1.9	214
69	Modified on-line monitoring of total gaseous mercury in flue gases using Semtech 1;1/2 Hg 2000 analyzer. Fresenius' Journal of Analytical Chemistry, 2000, 368, 528-533.	1.5	6
70	Improved determination of gaseous divalent mercury in ambient air using KCl coated denuders. Fresenius' Journal of Analytical Chemistry, 2000, 366, 423-428.	1.5	35
71	Distribution Equilibrium of Mercury (II) Chloride between Water and Air Applied to Flue Gas Scrubbing. Journal of the Air and Waste Management Association, 2000, 50, 1663-1666.	0.9	11
72	International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmospheric Environment, 1999, 33, 3063-3073.	1.9	197

#	Article	IF	CITATION
73	Speciation of volatile mercury species present in digester and deposit gases. Applied Organometallic Chemistry, 1999, 13, 441-445.	1.7	21
74	Measurements of fractionated gaseous mercury concentrations over northwestern and central Europe, 1995-99. Journal of Environmental Monitoring, 1999, 1, 435-439.	2.1	19
75	Increases in mercury emissions from desert soils in response to rainfall and irrigation. Journal of Geophysical Research, 1999, 104, 21879-21888.	3.3	127
76	Factors affecting the measurement of mercury emissions from soils with flux chambers. Journal of Geophysical Research, 1999, 104, 21859-21871.	3.3	70
77	Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces. Journal of Geophysical Research, 1999, 104, 21831-21844.	3 . 3	180
78	Atmospheric mercury deposition on Fanjing Mountain Nature Reserve, Guizhou, China. Chemosphere, 1998, 36, 2191-2200.	4.2	25
79	Atmospheric mercury deposition to grass in southern Sweden. Science of the Total Environment, 1998, 213, 85-94.	3.9	20
80	Mercury pollution in a mining area of Guizhou, China: Fluxes over contaminated surfaces and concentrations in air, biological and geological samples. Toxicological and Environmental Chemistry, 1998, 67, 225-236.	0.6	9
81	On the Gas Phase Reactions Between Volatile Biogenic Mercury Species and the Nitrate Radical. Journal of Atmospheric Chemistry, 1997, 27, 233-247.	1.4	66
82	Sampling and determination of gas phase divalent mercury in the air using a KCl coated denuder. Fresenius' Journal of Analytical Chemistry, 1997, 358, 386-391.	1.5	50
83	Airborne concentrations and deposition fluxes of major and trace species at marine stations in Southern Scandinavia. Atmospheric Environment, 1996, 30, 3857-3872.	1.9	39
84	Rate of reaction between the nitrate radical and dimethyl mercury in the gas phase. Chemical Physics Letters, 1996, 257, 434-438.	1.2	22