Christopher M White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 2022, 937, .	1.4	8
2	A heat transfer model of fully developed turbulent channel flow. Journal of Fluid Mechanics, 2020, 884, .	1.4	4
3	A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flows. Journal of Fluid Mechanics, 2020, 901, .	1.4	13
4	Evaluation of the momentum integral method to determine the wall skin friction in separated flows. Experiments in Fluids, 2020, 61, 1.	1.1	0
5	Mean dynamics and transition to turbulence in oscillatory channel flow. Journal of Fluid Mechanics, 2019, 880, 864-889.	1.4	4
6	A uniform momentum zone–vortical fissure model of the turbulent boundary layer. Journal of Fluid Mechanics, 2019, 858, 609-633.	1.4	19
7	High-fidelity measurements in channel flow with polymer wall injection. Journal of Fluid Mechanics, 2019, 859, 851-886.	1.4	9
8	Turbulence Production in the Low Polymer Drag Reduction Regime. Springer Proceedings in Physics, 2019, , 105-110.	0.1	0
9	The Design and Validation of a Thermal Boundary Layer Wall Plate. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	0.8	1
10	Properties of the mean momentum balance in polymer drag-reduced channel flow. Journal of Fluid Mechanics, 2018, 834, 409-433.	1.4	17
11	A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160090.	1.6	8
12	An integral validation technique of RANS turbulence models. Computers and Fluids, 2017, 149, 150-159.	1.3	4
13	Efficacy of single-component MTV to measure turbulent wall-flow velocity derivative profiles at high resolution. Experiments in Fluids, 2017, 58, 1.	1.1	16
14	An exact integral method to evaluate wall heat flux in spatially developing two-dimensional wall-bounded flows. International Journal of Heat and Mass Transfer, 2015, 84, 856-861.	2.5	12
15	On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Experiments in Fluids, 2014, 55, 1.	1.1	32
16	Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number. Experiments in Fluids, 2013, 54, 1.	1.1	57
17	Mean force structure and its scaling in rough-wall turbulent boundary layers. Journal of Fluid Mechanics, 2013, 731, 682-712.	1.4	28
18	Echo Particle Image Velocimetry. Journal of Visualized Experiments, 2012, , .	0.2	7

CHRISTOPHER M WHITE

#	Article	IF	CITATIONS
19	Re-examining the logarithmic dependence of the mean velocity distribution in polymer drag reduced wall-bounded flow. Physics of Fluids, 2012, 24, .	1.6	43
20	Integral form of the skin friction coefficient suitable for experimental data. Experiments in Fluids, 2011, 50, 43-51.	1.1	39
21	Mean momentum balance analysis of rough-wall turbulent boundary layers. Physica D: Nonlinear Phenomena, 2010, 239, 1329-1337.	1.3	15
22	Mechanics and Prediction of Turbulent Drag Reduction with Polymer Additives. Annual Review of Fluid Mechanics, 2008, 40, 235-256.	10.8	571
23	Lean Hydrogen Combustion. , 2008, , 213-VIII.		11
24	OH* chemiluminescence measurements in a direct injection hydrogen-fuelled internal combustion engine. International Journal of Engine Research, 2007, 8, 185-204.	1.4	12
25	The hydrogen-fueled internal combustion engine: a technical review. International Journal of Hydrogen Energy, 2006, 31, 1292-1305.	3.8	806
26	New Answers on the Interaction Between Polymers and Vortices in Turbulent Flows. Flow, Turbulence and Combustion, 2005, 74, 311-329.	1.4	107
27	The turbulence structure of drag-reduced boundary layer flow. Experiments in Fluids, 2004, 36, 62-69.	1.1	133
28	On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. Journal of Fluid Mechanics, 2004, 514, 271-280.	1.4	224
29	Boundary Layer Studies on Polymer Drag Reduction Using PIV and PLIF. , 2003, , 763.		4
30	High-Reynolds-number turbulence in small apparatus: grid turbulence in cryogenic liquids. Journal of Fluid Mechanics, 2002, 452, 189-197.	1.4	23
31	The Use of Particle Image Velocimetry in the Study of Turbulence in Liquid Helium. Journal of Low Temperature Physics, 2002, 126, 327-332.	0.6	47
32	Laser wipers. Physical Review E, 2000, 62, 4421-4423.	0.8	2
33	The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. Journal of Fluid Mechanics, 2000, 409, 149-164.	1.4	263
34	The decay of grid turbulence in polymer and surfactant solutions. Physics of Fluids, 1999, 11, 2387-2393.	1.6	50
35	Does molecular rotation affect the transition Reynolds number?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 238, 323-327.	0.9	11
36	A Qualitative Evaluation of Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine. , 0, , .		15

#	Article	IF	CITATIONS
37	PIV and PLIF to Evaluate Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine. SAE International Journal of Engines, 0, 1, 657-668.	0.4	29