
Rae Silver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741088/publications.pdf Version: 2024-02-01

DAE SILVED

#	Article	IF	CITATIONS
1	A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 1996, 382, 810-813.	13.7	726
2	Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2410-2415.	3.3	497
3	Orchestrating time: arrangements of the brain circadian clock. Trends in Neurosciences, 2005, 28, 145-151.	4.2	405
4	Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13582-13587.	3.3	274
5	Sex differences in circadian timing systems: Implications for disease. Frontiers in Neuroendocrinology, 2014, 35, 111-139.	2.5	246
6	Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones. Journal of Neuroscience, 2011, 31, 16107-16116.	1.7	233
7	Expression of <i>Period</i> Genes: Rhythmic and Nonrhythmic Compartments of the Suprachiasmatic Nucleus Pacemaker. Journal of Neuroscience, 2001, 21, 7742-7750.	1.7	215
8	Mast cells in the brain: evidence and functional significance. Trends in Neurosciences, 1996, 19, 25-31.	4.2	214
9	Mast Cells Migrate from Blood to Brain. Journal of Neuroscience, 2000, 20, 401-408.	1.7	204
10	Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell and Tissue Research, 1988, 253, 189-98.	1.5	199
11	ls Cognitive Functioning Impaired in Methamphetamine Users? A Critical Review. Neuropsychopharmacology, 2012, 37, 586-608.	2.8	195
12	Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. European Journal of Neuroscience, 2002, 16, 1531-1540.	1.2	180
13	Suprachiasmatic Nucleus Organization. Chronobiology International, 1998, 15, 475-487.	0.9	158
14	Brain mast cells link the immune system to anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18053-18057.	3.3	154
15	Mast cells on the mind: new insights and opportunities. Trends in Neurosciences, 2013, 36, 513-521.	4.2	148
16	Parental Care in an Ecological Perspective: A Quantitative Analysis of Avian Subfamilies. American Zoologist, 1985, 25, 823-840.	0.7	142
17	Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): An anterograde and retrograde analysis. Journal of Comparative Neurology, 2004, 468, 361-379.	0.9	131
18	The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nature Neuroscience, 2003, 6, 111-112.	7.1	128

#	Article	IF	CITATIONS
19	Calbindin-D28K cells in the hamster SCN express light-induced Fos. NeuroReport, 1996, 7, 1224.	0.6	127
20	The regulation of neuroendocrine function: Timing is everything. Hormones and Behavior, 2006, 49, 557-574.	1.0	127
21	Localization of a Suprachiasmatic Nucleus Subregion Regulating Locomotor Rhythmicity. Journal of Neuroscience, 1999, 19, 5574-5585.	1.7	123
22	Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Research, 1990, 525, 45-58.	1.1	120
23	Phase Resetting Light Pulses Induce <i>Per1</i> and Persistent Spike Activity in a Subpopulation of Biological Clock Neurons. Journal of Neuroscience, 2003, 23, 1441-1450.	1.7	120
24	Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. European Journal of Neuroscience, 2004, 19, 1741-1748.	1.2	120
25	Gates and Oscillators: A Network Model of the Brain Clock. Journal of Biological Rhythms, 2003, 18, 339-350.	1.4	116
26	Resetting the brain clock: time course and localization of mPER1 and mPER2 protein expression in suprachiasmatic nuclei during phase shifts. European Journal of Neuroscience, 2004, 19, 1105-1109.	1.2	114
27	Phenotype Matters: Identification of Light-Responsive Cells in the Mouse Suprachiasmatic Nucleus. Journal of Neuroscience, 2004, 24, 68-75.	1.7	112
28	A Role for Androgens in Regulating Circadian Behavior and the Suprachiasmatic Nucleus. Endocrinology, 2007, 148, 5487-5495.	1.4	105
29	Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice. Hormones and Behavior, 2008, 53, 422-430.	1.0	104
30	Food-entrained circadian rhythms are sustained in arrhythmic <i>Clk/Clk</i> mutant mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R57-R67.	0.9	103
31	Output Signals of the Scn. Chronobiology International, 1998, 15, 535-550.	0.9	95
32	Two Antiphase Oscillations Occur in Each Suprachiasmatic Nucleus of Behaviorally Split Hamsters. Journal of Neuroscience, 2005, 25, 9017-9026.	1.7	93
33	Minireview: The Neuroendocrinology of the Suprachiasmatic Nucleus as a Conductor of Body Time in Mammals. Endocrinology, 2007, 148, 5640-5647.	1.4	93
34	Brain mast cell relationship to neurovasculature during development. Brain Research, 2007, 1171, 18-29.	1.1	91
35	The Suprachiasmatic Nucleus is a Functionally Heterogeneous Timekeeping Organ. Methods in Enzymology, 2005, 393, 451-465.	0.4	88
36	Androgens Modulate Structure and Function of the Suprachiasmatic Nucleus Brain Clock. Endocrinology, 2011, 152, 1970-1978.	1.4	85

#	Article	IF	CITATIONS
37	Neurotech for Neuroscience: Unifying Concepts, Organizing Principles, and Emerging Tools. Journal of Neuroscience, 2007, 27, 11807-11819.	1.7	84
38	Multiple regulatory elements result in regional specificity in circadian rhythms of neuropeptide expression in mouse SCN. NeuroReport, 1999, 10, 3165-3174.	0.6	83
39	Cellular Location and Circadian Rhythm of Expression of the Biological Clock GenePeriod 1in the Mouse Retina. Journal of Neuroscience, 2003, 23, 7670-7676.	1.7	83
40	Direct Innervation of GnRH Neurons by Encephalic Photoreceptors in Birds. Journal of Biological Rhythms, 2001, 16, 39-49.	1.4	82
41	Signaling within the Master Clock of the Brain: Localized Activation of Mitogen-Activated Protein Kinase by Gastrin-Releasing Peptide. Journal of Neuroscience, 2005, 25, 2447-2454.	1.7	79
42	Frequent marijuana use, binge drinking and mental health problems among undergraduates. American Journal on Addictions, 2015, 24, 499-506.	1.3	78
43	Photoperiod and Reproductive Condition Are Associated with Changes in RFamide-Related Peptide (RFRP) Expression in Syrian Hamsters (<i>Mesocricetus auratus</i>). Journal of Biological Rhythms, 2010, 25, 176-185.	1.4	74
44	The nucleus basalis of the pigeon: A single-unit analysis. Journal of Comparative Neurology, 1973, 147, 119-128.	0.9	71
45	Estrogen-progesterone regulation of nest-building and incubation behavior in ovariectomized ring doves (Streptopelia risoria) Journal of Comparative and Physiological Psychology, 1975, 88, 256-263.	1.8	71
46	Social interactions and androgen levels in birds. General and Comparative Endocrinology, 1981, 44, 454-463.	0.8	69
47	Retinal Innervation of Calbindin-D28K Cells in the Hamster Suprachiasmatic Nucleus: Ultrastructural Characterization. Journal of Biological Rhythms, 2000, 15, 103-111.	1.4	69
48	Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. European Journal of Neuroscience, 2011, 33, 1851-1865.	1.2	69
49	Serotonin of mast cell origin contributes to hippocampal function. European Journal of Neuroscience, 2012, 36, 2347-2359.	1.2	68
50	Expression of the circadian clock genePeriod 1in neuroendocrine cells: an investigation using mice with aPer1::GFP transgene. European Journal of Neuroscience, 2003, 17, 212-220.	1.2	67
51	Targeted Microlesions Reveal Novel Organization of the Hamster Suprachiasmatic Nucleus. Journal of Neuroscience, 2004, 24, 2449-2457.	1.7	67
52	Circadian rhythms have broad implications for understanding brain and behavior. European Journal of Neuroscience, 2014, 39, 1866-1880.	1.2	67
53	Radioimmunoassay of Plasma Progesterone During the Reproductive Cycle of Male and Female Ring Doves (<i>Streptopelia risoria</i>) ¹ . Endocrinology, 1974, 94, 1547-1554.	1.4	66
54	Neuroendocrine underpinnings of sex differences in circadian timing systems. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 118-126.	1.2	65

#	Article	IF	CITATIONS
55	Increased VIP and Decreased GnRH Expression in Photorefractory Dark-Eyed Juncos (Junco hyemalis). General and Comparative Endocrinology, 1994, 93, 128-136.	0.8	64
56	Suckling and genital stroking induces Fos expression in hypothalamic oxytocinergic neurons of rabbit pups. Developmental Brain Research, 2003, 143, 119-128.	2.1	63
57	Dose-Dependent Effects of Androgens on the Circadian Timing System and Its Response to Light. Endocrinology, 2012, 153, 2344-2352.	1.4	60
58	Reproductive Behavior, Endocrine State, and the Distribution of GnRH-like Immunoreactive Mast Cells in Dove Brain. Hormones and Behavior, 1993, 27, 283-295.	1.0	58
59	Suprachiasmatic nucleus as the site of androgen action on circadian rhythms. Hormones and Behavior, 2015, 73, 1-7.	1.0	57
60	Prolactin and parenting in the pigeon family. The Journal of Experimental Zoology, 1984, 232, 617-625.	1.4	56
61	Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. European Journal of Neuroscience, 2006, 23, 1047-1053.	1.2	56
62	Gates and Oscillators II: Zeitgebers and the Network Model of the Brain Clock. Journal of Biological Rhythms, 2007, 22, 14-25.	1.4	56
63	Circadian Locomotor Rhythms, but Not Photoperiodic Responses, Survive Surgical Isolation of the SCN in Hamsters. Journal of Biological Rhythms, 1991, 6, 97-113.	1.4	55
64	Gonadal Steroids Regulate the Number and Activational State of Mast Cells in the Medial Habenula1. Endocrinology, 2000, 141, 1178-1186.	1.4	55
65	A short half-life GFP mouse model for analysis of suprachiasmatic nucleus organization. Brain Research, 2003, 964, 279-287.	1.1	54
66	Plasma luteinizing hormone in male ring doves during the breeding cycle. General and Comparative Endocrinology, 1980, 42, 19-24.	0.8	52
67	Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 745-750.	1.2	52
68	Retinohypothalamic Projections and the Suprachiasmatic Nucleus in Birds. Brain, Behavior and Evolution, 1989, 34, 73-83.	0.9	51
69	Changes in Brain Gonadotropin-Releasing Hormone- and Vasoactive Intestinal Polypeptide-like Immunoreactivity Accompanying Reestablishment of Photosensitivity in Male Dark-Eyed Juncos (Junco) Tj ETQq1	1 0.8 843	l 4agBT /Ove
70	Vasoactive intestinal polypeptide-like immunoreactivity during reproduction in doves: Influence of experience and number of offspring. Hormones and Behavior, 1990, 24, 215-231.	1.0	48
71	Neural basis of timing and anticipatory behaviors. European Journal of Neuroscience, 2009, 30, 1643-1649.	1.2	48
72	Restoration of Circadian Rhythmicity by Transplants of SCN "Micropunches". Journal of Biological Rhythms, 1996, 11, 163-171.	1.4	47

Rae Silver

#	Article	IF	CITATIONS
73	Two forces for arousal: Pitting hunger versus circadian influences and identifying neurons responsible for changes in behavioral arousal. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20078-20083.	3.3	46
74	Nature's food anticipatory experiment: entrainment of locomotor behavior, suprachiasmatic and dorsomedial hypothalamic nuclei by suckling in rabbit pups. European Journal of Neuroscience, 2008, 27, 432-443.	1.2	45
75	Distribution of vasoactive intestinal peptide-like and neurophysin-like immunoreactive neurons and acetylcholinesterase staining in the ring dove hypothalamus with emphasis on the question of an avian suprachiasmatic nucleus. Cell and Tissue Research, 1990, 259, 331-339.	1.5	44
76	Lithium lengthens the period of circadian rhythms in lesioned hamsters bearing SCN grafts. Biological Psychiatry, 1993, 34, 75-83.	0.7	44
77	Activation of lordosis in ovariectomized guinea pigs by free and esterified forms of estrone, estradiol-17l² and estriol. Physiology and Behavior, 1974, 13, 251-255.	1.0	43
78	Calbindin Influences Response to Photic Input in Suprachiasmatic Nucleus. Journal of Neuroscience, 2003, 23, 8820-8826.	1.7	43
79	Oxytocin and vasopressin immunoreactivity in rabbit hypothalamus during estrus, late pregnancy, and postpartum. Brain Research, 1996, 720, 7-16.	1.1	42
80	Brain mast cells lack the c-kit receptor: immunocytochemical evidence. Journal of Neuroimmunology, 1998, 90, 207-211.	1.1	40
81	The role of Period1 in non-photic resetting of the hamster circadian pacemaker in the suprachiasmatic nucleus. Neuroscience Letters, 2004, 362, 87-90.	1.0	40
82	A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task Behavioral Neuroscience, 2015, 129, 269-280.	0.6	40
83	Stimulus requirements for prolactin and LH secretion in incubating ring doves. General and Comparative Endocrinology, 1985, 59, 246-256.	0.8	39
84	Deconstructing Circadian Rhythmicity with Models and Manipulations. Trends in Neurosciences, 2016, 39, 405-419.	4.2	39
85	Reproductive Mechanisms: Interaction of Circadian and Interval Timing. Annals of the New York Academy of Sciences, 1984, 423, 488-514.	1.8	38
86	Diurnal and circadian variation of protein kinase C immunoreactivity in the rat retina. Journal of Comparative Neurology, 2001, 439, 140-150.	0.9	38
87	Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship. ENeuro, 2018, 5, ENEURO.0205-18.2018.	0.9	38
88	<i>Circadian and Homeostatic Factors in Arousal</i> . Annals of the New York Academy of Sciences, 2008, 1129, 263-274.	1.8	37
89	Food anticipation depends on oscillators and memories in both body and brain. Physiology and Behavior, 2011, 104, 562-571.	1.0	37
90	Reorganization of Suprachiasmatic Nucleus Networks under 24-h LDLD Conditions. Journal of Biological Rhythms, 2010, 25, 19-27.	1.4	35

#	Article	IF	CITATIONS
91	Selective Distribution of Retinal Input to Mouse SCN Revealed in Analysis of Sagittal Sections. Journal of Biological Rhythms, 2015, 30, 251-257.	1.4	35
92	Functional Characteristics of Single Units in the Spinal Trigeminal Nucleus of the Pigeon. Brain, Behavior and Evolution, 1973, 8, 287-303.	0.9	34
93	Targeted mutation of the calbindin D _{28K} gene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 27, 2907-2921.	1.2	34
94	Stimuli from Conspecifics Influence Brain Mast Cell Population in Male Rats. Hormones and Behavior, 2002, 42, 1-12.	1.0	33
95	Residual effects of intranasal methamphetamine on sleep, mood, and performance. Drug and Alcohol Dependence, 2008, 94, 258-262.	1.6	33
96	The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacology, 2016, 233, 615-624.	1.5	33
97	Mast cells in the rat brain synthesize gonadotropin-releasing hormone. Journal of Neurobiology, 2003, 56, 113-124.	3.7	32
98	Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus. Developmental Brain Research, 2005, 157, 8-18.	2.1	31
99	Dayâ€length encoding through tonic photic effects in the retinorecipient SCN region. European Journal of Neuroscience, 2008, 28, 2108-2115.	1.2	30
100	Circadian Insights into Motivated Behavior. Current Topics in Behavioral Neurosciences, 2015, 27, 137-169.	0.8	30
101	Retinohypothalamic pathway in the dove demonstrated by anterograde HRP. Brain Research Bulletin, 1983, 10, 715-718.	1.4	28
102	Time course of peptidergic expression in fetal suprachiasmatic nucleus transplanted into adult hamster. Developmental Brain Research, 1990, 57, 1-6.	2.1	28
103	Immunocytochemical Distribution of GnRH in the Brain of Adult and Posthatching Great Tit Parus major and Ring Dove Streptopelia roseogrisea. Ornis Scandinavica, 1992, 23, 222.	1.0	28
104	Mast cells are necessary for the hypothermic response to LPS-induced sepsis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R595-R602.	0.9	28
105	Basis of Robustness and Resilience in the Suprachiasmatic Nucleus: Individual Neurons Form Nodes in Circuits that Cycle Daily. Journal of Biological Rhythms, 2009, 24, 340-352.	1.4	28
106	Specializations of gastrinâ€releasing peptide cells of the mouse suprachiasmatic nucleus. Journal of Comparative Neurology, 2010, 518, 1249-1263.	0.9	28
107	Review: Brain, Hormone and Behavior Interactions in Avian Reproduction: Status and Prospectus. Condor, 1989, 91, 966.	0.7	27
108	Calbindin expression in the hamster SCN is influenced by circadian genotype and by photic conditions. NeuroReport, 1999, 10, 3159-3163.	0.6	27

Rae Silver

#	Article	IF	CITATIONS
109	Role of adrenal hormones in incubation behavior of male ring doves (Streptopelia risoria) Journal of Comparative and Physiological Psychology, 1973, 84, 453-463.	1.8	26
110	DARPP-32 Involvement in the Photic Pathway of the Circadian System. Journal of Neuroscience, 2006, 26, 9434-9438.	1.7	26
111	Social interactions and androgen levels in birds. General and Comparative Endocrinology, 1981, 44, 464-469.	0.8	25
112	Circadian Rhythms in the Endocrine System. , 2002, , 33-91.		25
113	All amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell and Tissue Research, 2004, 315, 181-186.	1.5	25
114	Antibodies for Assessing Circadian Clock Proteins in the Rodent Suprachiasmatic Nucleus. PLoS ONE, 2012, 7, e35938.	1.1	25
115	Combining Small-Volume Metabolomic and Transcriptomic Approaches for Assessing Brain Chemistry. Analytical Chemistry, 2013, 85, 3136-3143.	3.2	24
116	Timing of incubation bouts by ring doves (Streptopelia risoria) Journal of Comparative Psychology (Washington, D C: 1983), 1983, 97, 213-225.	0.3	24
117	Role of gonadal hormones in incubation behavior of male ring doves (Streptopelia risoria) Journal of Comparative and Physiological Psychology, 1973, 84, 464-471.	1.8	23
118	What determines the pattern of sharing of incubation and brooding in ring doves?. Journal of Comparative and Physiological Psychology, 1979, 93, 481-492.	1.8	23
119	Tracing SCN graft efferents with Dil. Brain Research, 1991, 554, 15-21.	1.1	23
120	Termination of incubation in doves: Influence of egg fertility and absence of mate. Hormones and Behavior, 1980, 14, 93-106.	1.0	22
121	Brain mast cells are influenced by chemosensory cues associated with estrus induction in female prairie voles (Microtus ochrogaster). Hormones and Behavior, 2003, 44, 377-384.	1.0	22
122	Twelveâ€hour days in the brain and behavior of split hamsters. European Journal of Neuroscience, 2012, 36, 2556-2566.	1.2	22
123	Situational and hormonal determinants of courtship, aggressive and incubation behavior in male ring doves (Streptopelia risoria). Hormones and Behavior, 1973, 4, 163-172.	1.0	21
124	Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus. Journal of Neurophysiology, 2011, 106, 576-588.	0.9	21
125	Blunted Refeeding Response and Increased Locomotor Activity in Mice Lacking FoxO1 in Synapsin- <i>Cre</i> –Expressing Neurons. Diabetes, 2013, 62, 3373-3383.	0.3	21
126	GnRH, brain mast cells and behavior. Progress in Brain Research, 2002, 141, 315-325.	0.9	20

#	Article	IF	CITATIONS
127	Differential localization of <scp>PER</scp> 1 and <scp>PER</scp> 2 in the brain master circadian clock. European Journal of Neuroscience, 2017, 45, 1357-1367.	1.2	20
128	Retinal projections in quail (Coturnix coturnix). Visual Neuroscience, 1989, 3, 377-387.	0.5	19
129	Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep and Biological Rhythms, 2010, 8, 120-136.	0.5	19
130	Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3?. International Journal of Molecular Sciences, 2017, 18, 1133.	1.8	19
131	Circadian Trafficking of Calbindin-ir in Fibers of SCN Neurons. Journal of Biological Rhythms, 2009, 24, 488-496.	1.4	18
132	Blood-borne donor mast cell precursors migrate to mast cell-rich brain regions in the adult mouse. Journal of Neuroimmunology, 2011, 240-241, 142-146.	1.1	18
133	Associative factors and the development of pecking in the ring dove. Developmental Psychobiology, 1985, 18, 447-460.	0.9	17
134	Fiber outgrowth from anterior hypothalamic and cortical xenografts in the third ventricle. , 1998, 391, 133-145.		17
135	Reproductive Physiology and Behavior Interactions in Nonmammalian Vertebrates. , 1985, , 101-182.		17
136	Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain. Nature Communications, 2021, 12, 5643.	5.8	17
137	Avian Behavioral Endocrinology. BioScience, 1983, 33, 567-572.	2.2	16
138	CSF signaling in physiology and behavior. Progress in Brain Research, 2000, 125, 415-433.	0.9	16
139	Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. European Journal of Neuroscience, 2020, 51, 71-81.	1.2	16
140	Circadian and Interval Timing Mechanisms in the Ovulatory Cycle of the Hen. Poultry Science, 1986, 65, 2355-2362.	1.5	15
141	Display of courtship and incubation behavior during the reproductive cycle of the male ring dove (Streptopelia risoria). Hormones and Behavior, 1977, 8, 8-21.	1.0	14
142	Neither triazolam nor activity phase advance circadian locomotor activity in SCN-lesioned hamsters bearing fetal SCN transplants. Brain Research, 1991, 566, 40-45.	1.1	14
143	Coitus-induced activation of c-fos and gonadotropin-releasing hormone in hypothalamic neurons in female rabbits. Molecular Brain Research, 2000, 78, 69-79.	2.5	14
144	Effects of the antiandrogen cyproterone acetate on reproduction in male and female ring doves. Hormones and Behavior, 1977, 9, 371-379.	1.0	13

#	Article	IF	CITATIONS
145	Suprachiasmatic nucleus lesions abolish and fetal grafts restore circadian gnawing rhythms in hamsters. Restorative Neurology and Neuroscience, 1994, 6, 135-143.	0.4	12
146	The Suprachiasmatic Nucleus and Circadian Function: an Interoduction. Chronobiology International, 1998, 15, vii-x.	0.9	12
147	Time of day influences the voluntary intake and behavioral response to methamphetamine and food reward. Pharmacology Biochemistry and Behavior, 2013, 110, 117-126.	1.3	11
148	Arginine Vasopressin-Containing Neurons of the Suprachiasmatic Nucleus Project to CSF. ENeuro, 2021, 8, ENEURO.0363-20.2021.	0.9	10
149	Intraventricular Prolactin Inhibits Hypothalamic Vasoactive-Intestinal Polypeptide-Expression in Doves. Journal of Neuroendocrinology, 1995, 7, 881-887.	1.2	9
150	Cellular localization and function of DARPP-32 in the rodent retina. European Journal of Neuroscience, 2007, 25, 3233-3242.	1.2	9
151	Host resets phase of grafted SCN: influence of implant site, tissue specificity and pineal secretion. Neuroscience Letters, 1994, 176, 80-84.	1.0	8
152	Phase shifts and Per gene expression in mouse suprachiasmatic nucleus. NeuroReport, 2003, 14, 1247-1251.	0.6	8
153	Host resets phase of grafted suprachiasmatic nucleus: a 2-DG study of time course of entrainment. Brain Research, 1994, 655, 168-176.	1.1	7
154	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2015, , 1-49.		7
155	The development of a developmentalist: Daniel S. Lehrman. Developmental Psychobiology, 1987, 20, 563-570.	0.9	6
156	Heavy water lengthens the period of free-running rhythms in lesioned hamsters bearing SCN grafts. Physiology and Behavior, 1993, 54, 599-604.	1.0	6
157	Targeted mutation of the calbindin D _{28k} gene selectively alters nonvisual photosensitivity. European Journal of Neuroscience, 2011, 33, 2299-2307.	1.2	6
158	Phase Gradients and Anisotropy of the Suprachiasmatic Network: Discovery of Phaseoids. ENeuro, 2021, 8, ENEURO.0078-21.2021.	0.9	6
159	Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	6
160	Microcomputers in psychology laboratory courses. Behavior Research Methods, 1984, 16, 150-152.	1.3	5
161	Biotinylated Dextran Amine as a Marker for Fetal Hypothalamic Homografts and Their Efferents. Experimental Neurology, 2002, 174, 72-80.	2.0	5
162	Brain Activity during Methamphetamine Anticipation in a Non-Invasive Self-Administration Paradigm in Mice. ENeuro, 2018, 5, ENEURO.0433-17.2018.	0.9	5

#	Article	IF	CITATIONS
163	Automatic monitoring of temperature and/or location: A computer-controlled radiotelemetry system. Behavior Research Methods, 1984, 16, 533-537.	1.3	4

Location of neurons projecting to the hypophysial stalk ? median eminence in ring doves (Streptopelia) Tj ETQq0 0 $p_{1.5}$ gBT /Overlock 10 $p_{1.5}$

165	Cells have sex chromosomes and circadian clocks: Implications for organismal level functions. Physiology and Behavior, 2018, 187, 6-12.	1.0	4
166	Biparental Care. , 1983, , 145-171.		3
167	Immunocompetence, mast cells and sexual behaviour. Ibis, 1996, 138, 101-111.	1.0	3
168	Musashiâ€2 and related stem cell proteins in the mouse suprachiasmatic nucleus and their potential role in circadian rhythms. International Journal of Developmental Neuroscience, 2019, 75, 44-58.	0.7	3
169	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2013, , 1847-1888.		2
170	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2016, , 2241-2288.		2
171	Elevated zinc transporter ZnT3 in the dentate gyrus of mast cellâ€deficient mice. European Journal of Neuroscience, 2020, 51, 1504-1513.	1.2	2
172	Editorial: Development of Circadian Clock Functions. Frontiers in Neuroscience, 2021, 15, 735007.	1.4	2
173	Location of neurons projecting to the hypophysial stalk ? median eminence in ring doves (Streptopelia) Tj ETQq1	1 0.78431 1.5	4 rgBT /O
173 174	Location of neurons projecting to the hypophysial stalk ? median eminence in ring doves (Streptopelia) Ij EIQq1 The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2021, , 1-49.	1 <u>9.</u> 78431	4 ₂ rgBT /Ov 2
		1 0.78431 1.5	2
174	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2021, , 1-49. Inhibition of Crop—Sac Growth by Dexamethasone in Ring Doves (<i>Streptopelia risoria</i>)1.	1.0	2
174 175	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2021, , 1-49. Inhibition of Crop—Sac Growth by Dexamethasone in Ring Doves (<i>Streptopelia risoria</i>)1. Endocrinology, 1973, 92, 1568-1571.	1.0	2
174 175 176	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2021, , 1-49. Inhibition of Cropâ€"Sac Growth by Dexamethasone in Ring Doves (<i>Streptopelia risoria</i>)1. Endocrinology, 1973, 92, 1568-1571. Abundance of Degrees of Freedom. , 2008, , 3-3.	1.0	2 2 1 1
174 175 176 177	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body., 2021, , 1-49. Inhibition of Cropâ€"Sac Growth by Dexamethasone in Ring Doves (<i>Streptopelia risoria</i>)1. Endocrinology, 1973, 92, 1568-1571. Abundance of Degrees of Freedom., 2008, , 3-3. Circadian Regulation of Endocrine Functions., 2017, , 345-369. Circadian rhythmicity and the community of clockworkers. European Journal of Neuroscience, 2020,	1.4	2 2 1 1 1

#	Article	IF	CITATIONS
181	Gene-Hormone-Environment Interactions in the Regulation of Aggressive Responses: Elegant Analysis of Complex Behavior. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe55.	4.1	0
182	Targeted mutation of the calbindin D28Kgene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 28, 1030-1030.	1.2	0
183	Phase waves in the suprachiasmatic nucleus (Commentary on Hong <i>et al.</i>). European Journal of Neuroscience, 2012, 35, 1416-1416.	1.2	0
184	Jay S. Rosenblatt, Ph.D., 1924-2014. Developmental Psychobiology, 2014, 56, 1164-1165.	0.9	0
185	Circadian and Circannual Rhythms and Hormones. , 2019, , 579-587.		0
186	Building a Mammalian Brain Clock. FASEB Journal, 2007, 21, A144.	0.2	0
187	Effect of time of day on methamphetamine anticipation and neural activation. FASEB Journal, 2012, 26, lb794.	0.2	0