
Magdalena Majekova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1740880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Novel Indole-Based Bifunctional Aldose Reductase Inhibitors/Antioxidants as Promising Drugs for the Treatment of Diabetic Complications. Molecules, 2021, 26, 2867.	3.8	10
2	Synthesis, biological evaluation, and molecular modeling of nitrileâ€containing compounds: Exploring multiple activities as antiâ€Alzheimer agents. Drug Development Research, 2020, 81, 215-231.	2.9	8
3	Development of Novel Oxotriazinoindole Inhibitors of Aldose Reductase: Isosteric Sulfur/Oxygen Replacement in the Thioxotriazinoindole Cemtirestat Markedly Improved Inhibition Selectivity. Journal of Medicinal Chemistry, 2020, 63, 369-381.	6.4	20
4	(4-Oxo-2-thioxothiazolidin-3-yl)acetic acids as potent and selective aldose reductase inhibitors. Chemico-Biological Interactions, 2020, 332, 109286.	4.0	12
5	Phenolic Compounds from <i>Morus nigra</i> Regulate Viability and Apoptosis of Pancreatic β-Cells Possibly via SERCA Activity. ACS Medicinal Chemistry Letters, 2020, 11, 1006-1013.	2.8	5
6	Structural Changes of Sarco/Endoplasmic Reticulum Ca2+-ATPase Induced by Rutin Arachidonate: A Molecular Dynamics Study. Biomolecules, 2020, 10, 214.	4.0	3
7	Electrophysiology and Behavioral Assessment of the New Molecule SMe1EC2M3 as a Representative of the Future Class of Triple Reuptake Inhibitors. Molecules, 2019, 24, 4218.	3.8	11
8	Chalcones and their pyrazine analogs: synthesis, inhibition of aldose reductase, antioxidant activity, and molecular docking study. Monatshefte Für Chemie, 2018, 149, 921-929.	1.8	13
9	Electrochemical behavior of sarco/endoplasmic reticulum Ca-ATPase in response to carbonylation processes. Journal of Electroanalytical Chemistry, 2018, 812, 258-264.	3.8	5
10	Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking. Bioorganic Chemistry, 2018, 78, 280-289.	4.1	8
11	Ligand-based drug design of novel aldose reductase inhibitors. Future Medicinal Chemistry, 2018, 10, 2493-2496.	2.3	6
12	Dysfunction of SERCA pumps as novel mechanism of methylglyoxal cytotoxicity. Cell Calcium, 2018, 74, 112-122.	2.4	5
13	Structure optimization of tetrahydropyridoindole-based aldose reductase inhibitors improved their efficacy and selectivity. Bioorganic and Medicinal Chemistry, 2017, 25, 6353-6360.	3.0	14
14	Does Inhibition of Aldose Reductase Contribute to the Anti-Inflammatory Action of Setipiprant?. Physiological Research, 2017, 66, 687-693.	0.9	6
15	Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Frontiers in Neuroscience, 2016, 10, 375.	2.8	55
16	[5-(Benzyloxy)-1H-indol-1-yl]acetic acid, an aldose reductase inhibitor and PPARÎ ³ ligand. Acta Biochimica Polonica, 2015, 62, 523-528.	0.5	7
17	Protection or cytotoxicity mediated by aâ€ [−] novel quinonoid-polyphenol compound?. General Physiology and Biophysics, 2015, 34, 51-64.	0.9	9
18	Antioxidant action of 3-mercapto-5 <i>H</i> -1,2,4-triazino[5,6- <i>b</i>]indole-5-acetic acid, an efficient aldose reductase inhibitor, in a 1,1â€2-diphenyl-2-picrylhydrazyl assay and in the cellular system of isolated erythrocytes exposed to <i>tert</i> -butyl hydroperoxide. Redox Report, 2015, 20, 282-288.	4.5	14

#	Article	IF	CITATIONS
19	Identification of Novel Aldose Reductase Inhibitors Based on Carboxymethylated Mercaptotriazinoindole Scaffold. Journal of Medicinal Chemistry, 2015, 58, 2649-2657.	6.4	42
20	Rutin stimulates sarcoplasmic reticulum Ca2+-ATPase activity (SERCA1) and protects SERCA1 from peroxynitrite mediated injury. Molecular and Cellular Biochemistry, 2015, 402, 51-62.	3.1	7
21	Inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA1) by rutin derivatives. Journal of Muscle Research and Cell Motility, 2015, 36, 183-194.	2.0	12
22	2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 107-113.	5.2	37
23	Substituted Pyridoindoles as Biological Antioxidants: Drug Design, Chemical Synthesis, and Biological Activity. Methods in Molecular Biology, 2015, 1208, 313-327.	0.9	5
24	Novel quercetin derivatives in treatment of peroxynitrite-oxidized SERCA1. Molecular and Cellular Biochemistry, 2014, 386, 1-14.	3.1	18
25	Novel quercetin derivatives in treatment of peroxynitrite-oxidized calcium pump. Free Radical Biology and Medicine, 2013, 65, S34.	2.9	0
26	2-Chloro-1,4-naphthoquinone derivative of quercetin as an efficient inhibitor of AKR1B1 and AKR1B10. Implications for diabetic complications, inflammatory disorders and cancer. Free Radical Biology and Medicine, 2013, 65, S50.	2.9	0
27	Novel Dibenzothiepins with Antibiofilm Activity Demonstrated by Microbiological Assays and Molecular Modeling. Current Organic Chemistry, 2013, 17, 113-124.	1.6	4
28	Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 800-809.	5.2	18
29	Substituted derivatives of indole acetic acid as aldose reductase inhibitors with†antioxidant activity: structure-activity relationship. General Physiology and Biophysics, 2012, 30, 342-349.	0.9	10
30	Natural and synthetic antioxidants: An updated overview. Free Radical Research, 2010, 44, 1216-1262.	3.3	229
31	Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling. Bioorganic and Medicinal Chemistry, 2008, 16, 4908-4920.	3.0	63
32	Free Radical Scavenging and Antioxidant Activities of Substituted Hexahydropyridoindoles. Quantitative Structureâ~'Activity Relationships. Journal of Medicinal Chemistry, 2006, 49, 2543-2548.	6.4	25
33	Development of the New Group of Indole-Derived Neuroprotective Drugs Affecting Oxidative Stress. Cellular and Molecular Neurobiology, 2006, 26, 1493-1502.	3.3	31
34	Antiradical effects of antihistamines in human blood. Structure-activity relationship Inflammation Research, 2006, 55, S85-S86.	4.0	5
35	The combined luminol/isoluminol chemiluminescence method for differentiating between extracellular and intracellular oxidant production by neutrophils. Redox Report, 2006, 11, 110-116.	4.5	37
36	Skin Permeation of Acyl Derivatives of Stobadine. Drug Delivery, 2006, 13, 51-54.	5.7	2

Magdalena Majekova

#	Article	IF	CITATIONS
37	Oxidation of liposomal membrane suppressed by flavonoids: Quantitative structure–activity relationship. Bioorganic and Medicinal Chemistry, 2005, 13, 6477-6484.	3.0	51
38	Antiradical and antioxidant activities of alkaloids isolated from Mahonia aquifolium. Structural aspects. Bioorganic and Medicinal Chemistry, 2004, 12, 4709-4715.	3.0	148
39	Structural aspects of antioxidant activity of substituted pyridoindoles. Redox Report, 2002, 7, 207-214.	4.5	29
40	On the interconversion energy barriers obtained for atropisomers of some polychlorinated biphenyls by AM1 semiempirical quantum chemistry method and gas chromatography on a modified cyclodextrin stationary phase. Fresenius' Journal of Analytical Chemistry, 1995, 352, 696-698.	1.5	14
41	QSARand Mechanistic studies on the genotoxic compounds including environmental effects. International Journal of Quantum Chemistry, 1989, 35, 153-165.	2.0	3
42	Approximate methods for solvent effects calculations on biomolecules. Computational and Theoretical Chemistry, 1989, 183, 403-419.	1.5	14
43	The extended polarizable continuum model for calculation of solvent effects. Computational and Theoretical Chemistry, 1988, 179, 353-366.	1.5	23