
David M Greenwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1740529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparison of Real-Time Thermal Rating Systems in the U.S. and the U.K IEEE Transactions on Power Delivery, 2014, 29, 1849-1858.	4.3	70
2	Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution. IEEE Transactions on Power Systems, 2019, 34, 3098-3108.	6.5	56
3	A Probabilistic Method Combining Electrical Energy Storage and Real-Time Thermal Ratings to Defer Network Reinforcement. IEEE Transactions on Sustainable Energy, 2017, 8, 374-384.	8.8	53
4	Optimization of Fuzzy Energy-Management System for Grid-Connected Microgrid Using NSGA-II. IEEE Transactions on Cybernetics, 2021, 51, 5375-5386.	9.5	50
5	Investigating the Impact of Real-Time Thermal Ratings on Power Network Reliability. IEEE Transactions on Power Systems, 2014, 29, 2460-2468.	6.5	47
6	A novel approach to frequency support in a wind integrated power system. Renewable Energy, 2017, 108, 194-206.	8.9	30
7	Chance-constrained optimization for integrated local energy systems operation considering correlated wind generation. International Journal of Electrical Power and Energy Systems, 2021, 132, 107153.	5.5	24
8	A Reliability-Based Method to Quantify the Capacity Value of Soft Open Points in Distribution Networks. IEEE Transactions on Power Systems, 2021, 36, 5032-5043.	6.5	22
9	Degradation and Operation-Aware Framework for the Optimal Siting, Sizing, and Technology Selection of Battery Storage. IEEE Transactions on Sustainable Energy, 2020, 11, 2130-2140.	8.8	20
10	Incorporating variable lifetime and selfâ€discharge into optimal sizing and technology selection of energy storage systems. IET Smart Grid, 2018, 1, 11-18.	2.2	19
11	Unlocking the benefits of realâ€ŧime thermal ratings through probabilistic power network planning. IET Generation, Transmission and Distribution, 2014, 8, 2055-2064.	2.5	17
12	A method to include component condition and substation reliability into distribution system reconfiguration. International Journal of Electrical Power and Energy Systems, 2019, 109, 122-138.	5.5	14
13	Applying Wind Simulations for Planning and Operation of Real-Time Thermal Ratings. IEEE Transactions on Smart Grid, 2015, , 1-11.	9.0	12
14	ESCoBox: A Set of Tools for Mini-Grid Sustainability in the Developing World. Sustainability, 2017, 9, 738.	3.2	11
15	Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity. Applied Energy, 2021, 298, 117261.	10.1	11
16	A reliability-aware chance-constrained battery sizing method for island microgrid. Energy, 2022, 251, 123978.	8.8	9
17	Adaptive receding horizon control for battery energy storage management with age-and-operation-dependent efficiency and degradation. Electric Power Systems Research, 2022, 209, 107936.	3.6	8
18	Hourly historical and near-future weather and climate variables for energy system modelling. Earth System Science Data, 2022, 14, 2749-2766.	9.9	6

DAVID M GREENWOOD

#	Article	IF	CITATIONS
19	Hybrid European MV–LV Network Models for Smart Distribution Network Modelling. , 2021, , .		5
20	Reliability assessment of island multiâ€energy microgrids. Energy Conversion and Economics, 2021, 2, 169-182.	3.2	5
21	Nonâ€local harmonic current and reactive power compensation for a multiâ€microgrid system using a series–shunt network device. IET Generation, Transmission and Distribution, 2020, 14, 5655-5666.	2.5	5
22	Hybrid Open Points: An Efficient Tool for Increasing Network Capacity in Distribution Systems. IEEE Transactions on Power Delivery, 2022, 37, 1340-1343.	4.3	5
23	A probabilistic method to quantify the capacity value of load transfer. International Journal of Electrical Power and Energy Systems, 2020, 123, 106238.	5.5	4
24	Optimization-based modelling and game-theoretic framework for techno-economic analysis of demand-side flexibility: A real case study. Applied Energy, 2022, 321, 119370.	10.1	3
25	Climate change risks in electricity networks. Infrastructure Asset Management, 2015, 2, 42-51.	1.6	2
26	Data mining of remote monitored stand-alone solar PV systems for State of Health estimation. , 2016, ,		2
27	A Forecasting, Optimization and Scheduling System for Energy Storage Systems in distribution networks. , 2016, , .		2
28	Calculations of System Adequacy Considering Heat Transition Pathways. , 2020, , .		2
29	Energy Storage Integration. , 2016, , 433-476.		1
30	Optimal battery sizing for a distribution network in Austria to maximise profits and reliability. CIRED - Open Access Proceedings Journal, 2021, , .	0.1	1
31	Methods and applications for electricity demand disaggregation in developing countries. , 2016, , .		0
32	Combining energy storage and real-time thermal ratings to solve distribution network problems: benefits and challenges. CIRED - Open Access Proceedings Journal, 2017, 2017, 1634-1637.	0.1	0
33	Integration of High Penetrations of Intermittent Renewable Generation in Future Electricity Networks Using Storage. , 2020, , 649-668.		0
34	Analysis of Network Impacts of Frequency Containment Provided by Domestic-Scale Devices Using Matrix Factorization. IEEE Transactions on Power Systems, 2021, 36, 5697-5707.	6.5	0
35	The use of voltage envelope and voltage dependent loads to increase the penetration of renewables. , 2021, , .		0
36	Degradation and Operation-Aware Framework for the Optimal Siting, Sizing and Technology Selection of Battery Storage. , 2020, , .		0

#	Article	IF	CITATIONS
37	Energy storage integration. , 2022, , 685-728.		0
38	Local distribution network management through optimal flexibility scheduling: the Austrian pilot of the Horizon 2020 MERLON project. , 2021, , .		0
39	Capacity Value of Interconnectors for Resource Adequacy Assessment in Multi-Region Systems. , 2022, ,		0
40	Comparing Generator Unavailability Models with Empirical Distributions from Open Energy Datasets. , 2022, , .		0