List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1740402/publications.pdf Version: 2024-02-01



Іоленім Сроа́Ϋ

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Perturbed-Chain SAFT:  An Equation of State Based on a Perturbation Theory for Chain Molecules.<br>Industrial & Engineering Chemistry Research, 2001, 40, 1244-1260.                                                                                       | 3.7 | 2,786     |
| 2  | Application of the Perturbed-Chain SAFT Equation of State to Associating Systems. Industrial &<br>Engineering Chemistry Research, 2002, 41, 5510-5515.                                                                                                     | 3.7 | 1,016     |
| 3  | Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry Research, 2002, 41, 1084-1093.                                                                               | 3.7 | 357       |
| 4  | An equation-of-state contribution for polar components: Dipolar molecules. AICHE Journal, 2006, 52,<br>1194-1204.                                                                                                                                          | 3.6 | 321       |
| 5  | Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains. Fluid Phase Equilibria, 2000, 168, 183-199.                                                                                               | 2.5 | 294       |
| 6  | An equation-of-state contribution for polar components: Quadrupolar molecules. AICHE Journal, 2005, 51, 2556-2568.                                                                                                                                         | 3.6 | 249       |
| 7  | Modeling Copolymer Systems Using the Perturbed-Chain SAFT Equation of State. Industrial &<br>Engineering Chemistry Research, 2003, 42, 1266-1274.                                                                                                          | 3.7 | 191       |
| 8  | Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial &<br>Engineering Chemistry Research, 2010, 49, 2834-2840.                                                                                                             | 3.7 | 126       |
| 9  | Modeling of polymer phase equilibria using Perturbed-Chain SAFT. Fluid Phase Equilibria, 2002, 194-197,<br>541-551.                                                                                                                                        | 2.5 | 124       |
| 10 | Thermodynamic modeling of complex systems using PC-SAFT. Fluid Phase Equilibria, 2005, 228-229, 89-98.                                                                                                                                                     | 2.5 | 122       |
| 11 | Group Contribution Method for Viscosities Based on Entropy Scaling Using the Perturbed-Chain Polar<br>Statistical Associating Fluid Theory. Industrial & Engineering Chemistry Research, 2015, 54,<br>7942-7952.                                           | 3.7 | 113       |
| 12 | An equation of state contribution for polar components: Polarizable dipoles. AICHE Journal, 2006, 52, 1951-1961.                                                                                                                                           | 3.6 | 109       |
| 13 | Simultaneous Optimization of Working Fluid and Process for Organic Rankine Cycles Using PC-SAFT.<br>Industrial & Engineering Chemistry Research, 2014, 53, 8821-8830.                                                                                      | 3.7 | 108       |
| 14 | A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state. Journal of Chemical Physics, 2009, 131, 204705.                                                                                                              | 3.0 | 98        |
| 15 | Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Computers and Chemical Engineering, 2015, 81, 278-287.                                                                                   | 3.8 | 97        |
| 16 | Vaporâ^'Liquid Equilibria Simulation and an Equation of State Contribution for Dipoleâ^'Quadrupole<br>Interactions. Journal of Physical Chemistry B, 2008, 112, 51-60.                                                                                     | 2.6 | 91        |
| 17 | Continuous Molecular Targeting–Computer-Aided Molecular Design (CoMT–CAMD) for Simultaneous<br>Process and Solvent Design for CO <sub>2</sub> Capture. Industrial & Engineering Chemistry<br>Research, 2014, 53, 18029-18041.                              | 3.7 | 79        |
| 18 | Classical Density Functional Theory for Liquid–Fluid Interfaces and Confined Systems: A Functional for the Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry Research, 2017, 56, 4119-4135. | 3.7 | 77        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparison between a Homo- and a Heterosegmented Group Contribution Approach Based on the<br>Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State. Industrial &<br>Engineering Chemistry Research, 2014, 53, 14854-14864. | 3.7 | 76        |
| 20 | Pure Substance and Mixture Viscosities Based on Entropy Scaling and an Analytic Equation of State.<br>Industrial & Engineering Chemistry Research, 2018, 57, 4095-4114.                                                                           | 3.7 | 76        |
| 21 | 1-stage CoMT-CAMD: An approach for integrated design of ORC process and working fluid using PC-SAFT. Chemical Engineering Science, 2017, 159, 217-230.                                                                                            | 3.8 | 74        |
| 22 | Thermal Conductivity of Real Substances from Excess Entropy Scaling Using PCP-SAFT. Industrial &<br>Engineering Chemistry Research, 2017, 56, 4527-4538.                                                                                          | 3.7 | 74        |
| 23 | Dehydration performance of a hydrophobic DD3R zeolite membrane. Journal of Membrane Science, 2008, 321, 344-349.                                                                                                                                  | 8.2 | 69        |
| 24 | Adsorption and Diffusion of Water, Methanol, and Ethanol in All-Silica DD3R: Experiments and Simulation. Journal of Physical Chemistry C, 2009, 113, 14290-14301.                                                                                 | 3.1 | 69        |
| 25 | Modeling the phase equilibria of hydrogen sulfide and carbon dioxide in mixture with hydrocarbons and water using the PCP-SAFT equation of state. Fluid Phase Equilibria, 2010, 293, 11-21.                                                       | 2.5 | 64        |
| 26 | From molecules to dollars: integrating molecular design into thermo-economic process design using consistent thermodynamic modeling. Molecular Systems Design and Engineering, 2017, 2, 301-320.                                                  | 3.4 | 54        |
| 27 | Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation. Journal of Membrane Science, 2009, 339, 261-274.                                                      | 8.2 | 49        |
| 28 | A Density Functional Theory for Vapor–Liquid Interfaces of Mixtures Using the Perturbed-Chain Polar<br>Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry<br>Research, 2014, 53, 6169-6178.               | 3.7 | 48        |
| 29 | Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium<br>Calculations: n-Alkanes and n-Olefins. Journal of Physical Chemistry B, 2015, 119, 11695-11707.                                              | 2.6 | 46        |
| 30 | Self-Diffusion Coefficients from Entropy Scaling Using the PCP-SAFT Equation of State. Industrial<br>& Engineering Chemistry Research, 2018, 57, 12942-12950.                                                                                     | 3.7 | 44        |
| 31 | Modeling of interfacial properties of multicomponent systems using density gradient theory and PCP-SAFT. Fluid Phase Equilibria, 2017, 439, 31-42.                                                                                                | 2.5 | 43        |
| 32 | Detemplation of DDR type zeolites by ozonication. Microporous and Mesoporous Materials, 2009, 120, 12-18.                                                                                                                                         | 4.4 | 38        |
| 33 | Equation of state for aqueous electrolyte systems based on the semirestricted non-primitive mean spherical approximation. Fluid Phase Equilibria, 2010, 297, 23-33.                                                                               | 2.5 | 38        |
| 34 | A non-equilibrium thermodynamics approach to model mass and heat transport for water pervaporation through a zeolite membrane. Journal of Membrane Science, 2009, 330, 388-398.                                                                   | 8.2 | 37        |
| 35 | Phase Behavior of Hyperbranched Polymer Systems: Experiments and Application of the<br>Perturbed-Chain Polar SAFT Equation of State. Journal of Physical Chemistry B, 2009, 113, 1022-1029.                                                       | 2.6 | 36        |
| 36 | Grand Canonical Monte Carlo Simulations Guided by an Analytic Equation of State—Transferable<br>Anisotropic Mie Potentials for Ethers. Journal of Physical Chemistry B, 2015, 119, 7087-7099.                                                     | 2.6 | 34        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Determining Force Field Parameters Using a Physically Based Equation of State. Journal of Physical Chemistry B, 2011, 115, 7872-7880.                                                                                                                                       | 2.6 | 33        |
| 38 | Numerical aspects of classical density functional theory for one-dimensional vapor-liquid interfaces.<br>Fluid Phase Equilibria, 2017, 444, 1-12.                                                                                                                           | 2.5 | 32        |
| 39 | Reactive Phase Equilibria in Silica Aerogel Synthesis:Â Experimental Study and Prediction of the<br>Complex Phase Behavior Using the PC-SAFT Equation of State. Industrial & Engineering Chemistry<br>Research, 2004, 43, 4457-4464.                                        | 3.7 | 31        |
| 40 | Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC. Energy Procedia, 2011, 4, 1214-1221.                                                                                                                                                       | 1.8 | 31        |
| 41 | Modeling properties of the one-dimensional vapor-liquid interface: Application of classical density functional and density gradient theory. Fluid Phase Equilibria, 2018, 458, 243-252.                                                                                     | 2.5 | 31        |
| 42 | Renormalization-Group Corrections to the Perturbed-Chain Statistical Associating Fluid Theory for Binary Mixtures. Industrial & Engineering Chemistry Research, 2010, 49, 9436-9444.                                                                                        | 3.7 | 30        |
| 43 | Density Functional Theory for Liquid–Liquid Interfaces of Mixtures Using the Perturbed-Chain Polar<br>Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry<br>Research, 2015, 54, 4633-4642.                                          | 3.7 | 30        |
| 44 | Detailed pedagogical review and analysis of Wertheim's thermodynamic perturbation theory. Fluid<br>Phase Equilibria, 2016, 428, 121-152.                                                                                                                                    | 2.5 | 30        |
| 45 | Prediction of Adsorption Isotherms and Selectivities: Comparison between Classical Density<br>Functional Theory Based on the Perturbed-Chain Statistical Associating Fluid Theory Equation of<br>State and Ideal Adsorbed Solution Theory. Langmuir, 2019, 35, 11690-11701. | 3.5 | 30        |
| 46 | Thermal Conductivity from Entropy Scaling: A Group-Contribution Method. Industrial &<br>Engineering Chemistry Research, 2019, 58, 20441-20449.                                                                                                                              | 3.7 | 30        |
| 47 | Nonequilibrium thermodynamics of interfaces using classical density functional theory. Journal of Chemical Physics, 2008, 129, 184703.                                                                                                                                      | 3.0 | 27        |
| 48 | A critical evaluation of perturbation theories by Monte Carlo simulation of the first four<br>perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid. Journal of Chemical<br>Physics, 2017, 147, 014503.                                            | 3.0 | 27        |
| 49 | Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density<br>Functional Theory Based on the PCP-SAFT Equation of State. Langmuir, 2018, 34, 12519-12531.                                                                                | 3.5 | 26        |
| 50 | On the Selection of Boundary Conditions for Droplet Evaporation and Condensation at high Pressure<br>and Temperature Conditions from interfacial Transport Resistivities. International Journal of Heat<br>and Mass Transfer, 2020, 151, 119450.                            | 4.8 | 26        |
| 51 | Modeling of Solid/Fluid Phase Equilibria in Multicomponent Systems at High Pressure. Chemical Engineering and Technology, 2001, 24, 607-612.                                                                                                                                | 1.5 | 25        |
| 52 | Simultaneous process and working fluid optimisation for Organic Rankine Cycles (ORC) using PC-SAFT.<br>Computer Aided Chemical Engineering, 2012, , 572-576.                                                                                                                | 0.5 | 25        |
| 53 | Detemplation of [B]MFI zeolite crystals by ozonication. Microporous and Mesoporous Materials, 2009, 120, 35-38.                                                                                                                                                             | 4.4 | 24        |
| 54 | Density functional theory for calculating surface tensions with a simple renormalization formalism for the critical point. Journal of Supercritical Fluids, 2010, 55, 735-742.                                                                                              | 3.2 | 24        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy<br>Losses in a Sulfuric Acid Decomposition Reactor. Industrial & Engineering Chemistry Research,<br>2009, 48, 8500-8507.     | 3.7  | 23        |
| 56 | Analysis of Interfacial Transport Resistivities of Pure Components and Mixtures Based on Density<br>Functional Theory. Industrial & Engineering Chemistry Research, 2015, 54, 11483-11492.                                | 3.7  | 23        |
| 57 | Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria:<br>Aldehydes, Ketones, and Small Cyclic Alkanes. Industrial & Engineering Chemistry Research, 2016,<br>55, 12123-12132. | 3.7  | 23        |
| 58 | Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory. Journal of Chemical Physics, 2018, 148, 164703.                                                            | 3.0  | 23        |
| 59 | On the importance of non-equilibrium models for describing the coupling of heat and mass transfer at high pressure. International Communications in Heat and Mass Transfer, 2018, 98, 49-58.                              | 5.6  | 23        |
| 60 | Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic<br>Rankine Cycles. Renewable and Sustainable Energy Reviews, 2021, 135, 110179.                                       | 16.4 | 23        |
| 61 | On the Driving Force of Methanol Pervaporation through a Microporous Methylated Silica<br>Membrane. Industrial & Engineering Chemistry Research, 2007, 46, 4091-4099.                                                     | 3.7  | 22        |
| 62 | Thermal Conductivity via Entropy Scaling: An Approach That Captures the Effect of Intramolecular<br>Degrees of Freedom. Industrial & Engineering Chemistry Research, 2019, 58, 18432-18438.                               | 3.7  | 22        |
| 63 | Multiobjective Optimization of PCP-SAFT Parameters for Water and Alcohols Using Surface Tension<br>Data. Journal of Chemical & Engineering Data, 2020, 65, 5698-5707.                                                     | 1.9  | 22        |
| 64 | Application of Infinite Dilution Activity Coefficients for Determining Binary Equation of State<br>Parameters. Industrial & Engineering Chemistry Research, 2010, 49, 7646-7653.                                          | 3.7  | 21        |
| 65 | Guide to efficient solution of PC-SAFT classical Density Functional Theory in various Coordinate<br>Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 2020, 504, 112306.                         | 2.5  | 21        |
| 66 | Integration of process and solvent design towards a novel generation of CO2 absorption capture systems. Energy Procedia, 2011, 4, 282-290.                                                                                | 1.8  | 20        |
| 67 | Integrated design of ORC process and working fluid using process flowsheeting software and PC-SAFT. Energy Procedia, 2017, 129, 129-136.                                                                                  | 1.8  | 20        |
| 68 | Estimation of the binary interaction parameter k of the PC-SAFT Equation of State based on pure component parameters using a QSPR method. Fluid Phase Equilibria, 2016, 416, 138-149.                                     | 2.5  | 18        |
| 69 | Non-Equilibrium Thermodynamics for Engineers. , 2017, , .                                                                                                                                                                 |      | 18        |
| 70 | Surfactant Modeling Using Classical Density Functional Theory and a Group Contribution PC-SAFT Approach. Industrial & amp; Engineering Chemistry Research, 2021, 60, 7111-7123.                                           | 3.7  | 17        |
| 71 | The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components. Journal of Chemical Physics, 2013, 139, 034505                                                                                | 3.0  | 16        |
| 72 | Modified Stokes–Einstein Equation for Molecular Self-Diffusion Based on Entropy Scaling. Industrial<br>& Engineering Chemistry Research, 2021, 60, 4453-4459.                                                             | 3.7  | 16        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Phase behavior of the system hyperbranched polyglycerol+methanol+carbon dioxide. Fluid Phase<br>Equilibria, 2010, 299, 252-258.                                                                                                        | 2.5 | 15        |
| 74 | Predictive density gradient theory based on nonlocal density functional theory. Physical Review E, 2018, 98, .                                                                                                                         | 2.1 | 15        |
| 75 | Free-Energy-Averaged Potentials for Adsorption in Heterogeneous Slit Pores Using PC-SAFT Classical<br>Density Functional Theory. Langmuir, 2021, 37, 3538-3549.                                                                        | 3.5 | 15        |
| 76 | Two performance indicators for the characterization of the entropy production in a process unit. Energy, 2011, 36, 3727-3732.                                                                                                          | 8.8 | 14        |
| 77 | Bayesian Model Selection Helps To Choose Objectively between Thermodynamic Models: A<br>Demonstration of Selecting a Viscosity Model Based on Entropy Scaling. Industrial & Engineering<br>Chemistry Research, 2016, 55, 10191-10207.  | 3.7 | 14        |
| 78 | Characterisation of acid–base surface free energy components of urea–water solutions. Colloids<br>and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 774-780.                                                         | 4.7 | 14        |
| 79 | A classical density functional theory for vapor-liquid interfaces consistent with the<br>heterosegmented group-contribution perturbed-chain polar statistical associating fluid theory. Fluid<br>Phase Equilibria, 2018, 472, 117-127. | 2.5 | 14        |
| 80 | Reply to Comment on "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for<br>Chain Molecules― Industrial & Engineering Chemistry Research, 2019, 58, 5744-5745.                                               | 3.7 | 14        |
| 81 | An analytical approximation for the orientation-dependent excluded volume of tangent hard sphere chains of arbitrary chain length and flexibility. Journal of Chemical Physics, 2012, 137, 044906.                                     | 3.0 | 13        |
| 82 | Computer-aided Molecular Design of ORC Working Fluids using PC-SAFT. Computer Aided Chemical Engineering, 2014, , 357-362.                                                                                                             | 0.5 | 13        |
| 83 | Three-body effects in triplets of capped gold nanocrystals. Molecular Physics, 2017, 115, 1031-1040.                                                                                                                                   | 1.7 | 13        |
| 84 | Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of<br>Colloid and Interface Science, 2017, 504, 751-757.                                                                            | 9.4 | 13        |
| 85 | Adsorption of light gases in covalent organic frameworks: comparison of classical density<br>functional theory and grand canonical Monte Carlo simulations. Microporous and Mesoporous<br>Materials, 2021, 324, 111263.                | 4.4 | 13        |
| 86 | An equation of state for the isotropic phase of linear, partially flexible and fully flexible tangent hard-sphere chain fluids. Molecular Physics, 2014, 112, 919-928.                                                                 | 1.7 | 12        |
| 87 | A new perturbation theory for electrolyte solutions. Journal of Chemical Physics, 2014, 141, 054103.                                                                                                                                   | 3.0 | 12        |
| 88 | An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones<br>chain fluids with variable degree of molecular flexibility. Journal of Chemical Physics, 2015, 142,<br>244903.                   | 3.0 | 11        |
| 89 | Accurate first-order perturbation theory for fluids: <i>uf</i> -theory. Journal of Chemical Physics, 2021, 154, 041102.                                                                                                                | 3.0 | 11        |
| 90 | Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: $cis_{12}v_{s}/i_{2}$ -theory lournal of Chemical Physics 2021 155 244501                           | 3.0 | 11        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Basic parameter study for the separation of a isopropanol–water mixture by using FricDiff<br>technology. Chemical Engineering and Processing: Process Intensification, 2007, 46, 810-817.                                    | 3.6 | 10        |
| 92  | A new equation of state for linear hard chains: Analysis of a third-order expansion of Wertheim's<br>Thermodynamic Perturbation Theory. Fluid Phase Equilibria, 2016, 416, 18-26.                                            | 2.5 | 10        |
| 93  | Transferability of cross-interaction pair potentials: Vapor-liquid phase equilibria of n-alkane/nitrogen mixtures using the TAMie force field. Fluid Phase Equilibria, 2018, 456, 124-130.                                   | 2.5 | 10        |
| 94  | Modeling Subsurface Hydrogen Storage With Transport Properties From Entropy Scaling Using the PCâ€ <b>S</b> AFT Equation of State. Water Resources Research, 2022, 58, .                                                     | 4.2 | 10        |
| 95  | Effective potentials between gold nano crystals – functional dependence on temperature. Molecular<br>Simulation, 2015, 41, 1153-1158.                                                                                        | 2.0 | 9         |
| 96  | A Continuous Targeting Approach for Integrated Solvent and Process Design Based on Molecular<br>Thermodynamic Models. Computer Aided Chemical Engineering, 2009, 27, 813-818.                                                | 0.5 | 8         |
| 97  | Grand canonical Monte Carlo simulations of vapor-liquid equilibria using a bias potential from an analytic equation of state. Journal of Chemical Physics, 2013, 138, 234106.                                                | 3.0 | 8         |
| 98  | Integrating working fluid design into the thermo-economic design of ORC processes using PC-SAFT.<br>Energy Procedia, 2017, 129, 121-128.                                                                                     | 1.8 | 8         |
| 99  | Individualized force fields for alkanes, olefins, ethers and ketones based on the transferable<br>anisotropic Mie potential. Fluid Phase Equilibria, 2018, 470, 101-108.                                                     | 2.5 | 8         |
| 100 | Direct numerical simulation of sublimating ice particles. International Journal of Thermal Sciences, 2019, 145, 105953.                                                                                                      | 4.9 | 8         |
| 101 | Dipolar Hard Spheres: Comprehensive Data from Monte Carlo Simulations. Journal of Chemical &<br>Engineering Data, 2019, 64, 827-832.                                                                                         | 1.9 | 8         |
| 102 | A Modified Shifted Force Approach to the Wolf Summation. Journal of Chemical Theory and Computation, 2019, 15, 572-583.                                                                                                      | 5.3 | 8         |
| 103 | Transferable Anisotropic Mie-Potential Force Field for <i>n</i> -Alcohols: Static and Dynamic Fluid<br>Properties of Pure Substances and Binary Mixtures. Industrial & Engineering Chemistry Research,<br>2020, 59, 919-929. | 3.7 | 8         |
| 104 | Modeling the phase equilibria of CO2 and H2S in aqueous electrolyte systems at elevated pressure.<br>Energy Procedia, 2009, 1, 1807-1814.                                                                                    | 1.8 | 7         |
| 105 | Phase Behavior of the System Linear Polyglycerol + Methanol + Carbon Dioxide. Journal of Chemical<br>& Engineering Data, 2011, 56, 2927-2931.                                                                                | 1.9 | 7         |
| 106 | Using an Analytic Equation of State to Obtain Quantitative Solubilities of CO2 by Molecular<br>Simulation. Journal of Physical Chemistry Letters, 2011, 2, 393-396.                                                          | 4.6 | 7         |
| 107 | Theory of model electrolyte solutions: Assessing the short- and long-ranged contributions by molecular simulations. Fluid Phase Equilibria, 2016, 430, 195-206.                                                              | 2.5 | 7         |
| 108 | Modification of the Wolf Method and Evaluation for Molecular Simulation of Vapor–Liquid Equilibria. Journal of Chemical Theory and Computation, 2018, 14, 2198-2206.                                                         | 5.3 | 7         |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | An improved group contribution method for PC-SAFT applied to branched alkanes: Data analysis and parameterization. Fluid Phase Equilibria, 2018, 473, 183-191.                                                                                | 2.5 | 7         |
| 110 | Transferable Anisotropic United-Atom Mie (TAMie) Force Field: Transport Properties from Equilibrium<br>Molecular Dynamic Simulations. Industrial & Engineering Chemistry Research, 2020, 59, 8855-8869.                                       | 3.7 | 7         |
| 111 | Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence. Journal of Chemical Physics, 2021, 155, 134101.                                                                  | 3.0 | 7         |
| 112 | Dielectric constant of mixed solvents based on perturbation theory. Fluid Phase Equilibria, 2022, 555, 113346.                                                                                                                                | 2.5 | 7         |
| 113 | Acceleration of Monte-Carlo molecular simulations on hybrid computing architectures. , 2012, , .                                                                                                                                              |     | 6         |
| 114 | On the Treatment of Electrostatic Interactions of Non-spherical Molecules in Equation of State<br>Models. Soft Materials, 2012, 10, 81-105.                                                                                                   | 1.7 | 6         |
| 115 | Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state. Journal of Chemical Physics, 2021, 154, 244106.                                                    | 3.0 | 6         |
| 116 | Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. Journal of Chemical Physics, 2022, 156, 104504.                                                                         | 3.0 | 6         |
| 117 | Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Microporous and Mesoporous Materials, 2022, 336, 111796.                                            | 4.4 | 6         |
| 118 | Investigating mass transport in zeolite pores by tuning the framework polarity. Studies in Surface<br>Science and Catalysis, 2007, , 942-948.                                                                                                 | 1.5 | 5         |
| 119 | Tuning the framework polarity in MFI membranes by deboronation: Effect on mass transport.<br>Microporous and Mesoporous Materials, 2009, 125, 39-45.                                                                                          | 4.4 | 5         |
| 120 | The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: An analytical equation of state. Journal of Chemical Physics, 2014, 140, 034504.                                           | 3.0 | 5         |
| 121 | Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity. Water Resources Research, 2014, 50, 763-789.                                                                                       | 4.2 | 5         |
| 122 | On the vapor-liquid equilibrium of attractive chain fluids with variable degree of molecular flexibility. Journal of Chemical Physics, 2015, 142, 224504.                                                                                     | 3.0 | 5         |
| 123 | Chemical potential of model electrolyte solutions consisting of hard sphere ions and hard dipoles from molecular simulations. Fluid Phase Equilibria, 2016, 429, 205-213.                                                                     | 2.5 | 5         |
| 124 | On the use of transport properties to discriminate Mie-type molecular models for 1-propanol optimized against VLE data. European Physical Journal: Special Topics, 2019, 227, 1529-1545.                                                      | 2.6 | 5         |
| 125 | Perturbed-Chain-SAFT. , 2004, , 295-322.                                                                                                                                                                                                      |     | 4         |
| 126 | Identifying Pure-Component Parameters of an Analytic Equation of State Using Experimental Surface<br>Tension or Molecular Simulations with a Transferable Force Field. Industrial & Engineering<br>Chemistry Research, 2018, 57, 12254-12263. | 3.7 | 4         |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Phase Equilibria of Solid and Fluid Phases from Molecular Dynamics Simulations with Equilibrium and<br>Nonequilibrium Free Energy Methods. Journal of Chemical Theory and Computation, 2019, 15, 3778-3792.                   | 5.3 | 4         |
| 128 | Nonprimitive Model Electrolyte Solutions: Comprehensive Data from Monte Carlo Simulations.<br>Journal of Chemical & Engineering Data, 2020, 65, 634-639.                                                                      | 1.9 | 4         |
| 129 | Perturbation approaches for describing dipolar fluids and electrolyte solutions. Journal of Chemical Physics, 2020, 153, 044102.                                                                                              | 3.0 | 4         |
| 130 | Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths: Comparing Static and Dynamic Fluid Properties. Journal of Chemical & Engineering Data, 2020, 65, 1583-1593.                                              | 1.9 | 4         |
| 131 | A third and fourth order perturbation theory for dipolar hard spheres. Journal of Chemical Physics, 2018, 149, 044901.                                                                                                        | 3.0 | 3         |
| 132 | Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase<br>Equilibria: Ethers, <i>n</i> -Alkanes, and Nitrogen. Journal of Chemical Theory and Computation, 2019,<br>15, 2561-2573. | 5.3 | 3         |
| 133 | Phase equilibria of binary mixtures with alkanes, ketones, and esters based on the Transferable<br>Anisotropic Mie force field. Fluid Phase Equilibria, 2019, 490, 123-132.                                                   | 2.5 | 3         |
| 134 | A fast inverse Hankel Transform of first Order for computing vector-valued weight Functions<br>appearing in Fundamental Measure Theory in cylindrical Coordinates. Fluid Phase Equilibria, 2020, 511,<br>112500.              | 2.5 | 3         |
| 135 | Different ways of looking at the force between two nanocrystals. Journal of Chemical Physics, 2015, 143, 244115.                                                                                                              | 3.0 | 2         |
| 136 | One-stage approach for the integrated design of ORC processes and working fluid using PC-SAFT.<br>Computer Aided Chemical Engineering, 2016, 38, 1335-1340.                                                                   | 0.5 | 2         |
| 137 | Integrated thermo-economic design of ORC process, working fluid and equipment using PC-SAFT.<br>Computer Aided Chemical Engineering, 2017, , 1795-1800.                                                                       | 0.5 | 2         |
| 138 | An equation of state for Stockmayer fluids based on a perturbation theory for dipolar hard spheres.<br>Journal of Chemical Physics, 2019, 151, 104102.                                                                        | 3.0 | 2         |
| 139 | Particle methods in natural science and engineering. European Physical Journal: Special Topics, 2019, 227, 1493-1499.                                                                                                         | 2.6 | 2         |
| 140 | Experimental Investigation of Droplet Injections in the Vicinity of the Critical Point: A comparison of different model approaches. , 0, , .                                                                                  |     | 2         |
| 141 | Extension of Wertheim's thermodynamic perturbation theory to include higher order graph<br>integrals. Journal of Chemical Physics, 2019, 150, 244902.                                                                         | 3.0 | 1         |
| 142 | EquationÂof state and Helmholtz energy functional for fused heterosegmented hard chains. Physical<br>Review E, 2022, 105, 034110.                                                                                             | 2.1 | 1         |
| 143 | Berechnung von Fest/Fluid-Phasengleichgewichten bei erhĶhten Drļcken. Chemie-Ingenieur-Technik,<br>2000, 72, 722-727                                                                                                          | 0.8 | 0         |
| 144 | Physically-based Thermodynamic Models in Integrated Process and Molecular Design. Computer Aided Chemical Engineering, 2014, 33, 67-72.                                                                                       | 0.5 | 0         |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Germany's next top molecule: PrÃ <b>d</b> iktive Thermodynamik als Schlüssel der simultanen Optimierung<br>von Prozess und LŶsungsmittel. Chemie-Ingenieur-Technik, 2018, 90, 1304-1304. | 0.8 | 0         |