Ronnie Hoekstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1740388/publications.pdf

Version: 2024-02-01

283 papers

5,436 citations

71102 41 h-index 54 g-index

286 all docs

286 docs citations

times ranked

286

2117 citing authors

#	Article	IF	CITATIONS
1	Mn ₁₂ â€Acetate Complexes Studied as Single Molecules. Chemistry - A European Journal, 2022, 28, .	3.3	3
2	Cross-calibration of a combined electrostatic and time-of-flight analyzer for energy- and charge-state-resolved spectrometry of tin laser-produced plasma. Applied Physics B: Lasers and Optics, 2022, 128, 39.	2.2	7
3	Intramolecular hydrogen transfer in DNA induced by site-selective resonant core excitation. Physical Chemistry Chemical Physics, 2022, 24, 7815-7825.	2.8	2
4	Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (Topical Review). Journal of Optics (United Kingdom), 2022, 24, 054014.	2.2	16
5	Recent Advances in Modeling Laser-Driven EUV Light Source Plasmas for Nanolithography. , 2022, , .		0
6	Solid-state-laser driven plasma produced from laser-preformed tin microdroplets for high-brightness EUV. , 2022, , .		0
7	Generation of 2-Micrometer Wavelength Laser-Light to Drive EUV-Emitting Plasmas. , 2022, , .		0
8	Energy- and charge-state-resolved spectrometry of tin laser-produced plasma using a retarding field energy analyzer. Applied Physics B: Lasers and Optics, 2022, 128, .	2.2	5
9	xmlns:mml="nttp://www.w3.org/1998/Math/Math/ML"> <mml:msup><mml:mi mathvariant="normal">Sn</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow>< ions with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> and <mml:math< td=""><td>:/mml:msu 2.5</td><td>p>4</td></mml:math<></mml:msup>	:/mml:msu 2.5	p>4
10	Multiple valence electron detachment following Auger decay of inner-shell vacancies in gas-phase DNA. Chemical Science, 2021, 12, 13177-13186.	7.4	4
11	Site-selective soft X-ray absorption as a tool to study protonation and electronic structure of gas-phase DNA. Physical Chemistry Chemical Physics, 2021, 23, 11900-11906.	2.8	6
12	Characterization of 1- and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mtext>â^'m</mml:mtext></mml:mrow></mml:math> -wavelength laser-produced microdroplet-tin plasma for generating extreme-ultraviolet light. Physical Review Research, 2021, 3, .	ml:mtext> <	(mml:mi>μ+
13	Characterization of angularly resolved EUV emission from 2-µm-wavelength laser-driven Sn plasmas using preformed liquid disk targets. Journal Physics D: Applied Physics, 2021, 54, 365103.	2.8	14
14	High-energy ions from Nd:YAG laser ablation of tin microdroplets: comparison between experiment and a single-fluid hydrodynamic model. Plasma Sources Science and Technology, 2021, 30, 105006.	3.1	18
15	Extreme ultraviolet light from a tin plasma driven by a 2-µm-wavelength laser. Optics Express, 2021, 29, 4475.	3.4	32
16	The spectrum of a 1- <i> μ </i> m-wavelength-driven tin microdroplet laser-produced plasma source in the 5.5–265.5 nm wavelength range. AIP Advances, 2021, 11, .	1.3	8
17	Spectral characterization of an industrial EUV light source for nanolithography. Journal Physics D: Applied Physics, 2020, 53, 055204.	2.8	15
18	EUV spectroscopy of Sn ⁵⁺ –Sn ¹⁰⁺ ions in an electron beam ion trap and laser-produced plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 195001.	1.5	12

#	Article	IF	Citations
19	The missing single-scattering peak in tin ion collisions on Mo and Ru targets. Journal of Physics: Conference Series, 2020, 1412, 202019.	0.4	1
20	Time- and space-resolved optical Stark spectroscopy in the afterglow of laser-produced tin-droplet plasma. Physical Review E, 2020, 102, 013204.	2.1	6
21	Single-collision scattering of keV-energy Kr ions off a polycrystalline Cu surface. Nuclear Instruments & Methods in Physics Research B, 2020, 482, 58-63.	1.4	2
22	Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography. Nature Communications, 2020, 11, 2334.	12.8	68
23	Atomic hydrogen interactions with small polycyclic aromatic hydrocarbons cations. European Physical Journal D, 2020, 74, 1.	1.3	3
24	Spectroscopic investigations of YAG-laser-driven microdroplet-tin plasma sources of extreme ultraviolet radiation for nanolithography. Journal of Physics: Conference Series, 2020, 1412, 192006.	0.4	0
25	EUV spectroscopy of highly charged <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>Snin an electron-beam ion trap. Physical Review A, 2020, 101, .</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>	നി: മ ൻ <td>ml24row><=</td>	m l24 row><=
26	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2020, 640, C3.	5.1	4
27	Solid-State-Laser-Produced Microdroplet-Tin Plasma Sources of Extreme Ultraviolet Radiation. , 2020, ,		0
28	Efficient Generation of Extreme Ultraviolet Light From <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Nd</mml:mi></mml:math> :YAG-Driven Microdroplet-Tin Plasma. Physical Review Applied, 2019, 12, .	3.8	45
29	Roadmap on photonic, electronic and atomic collision physics: II. Electron and antimatter interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171002.	1.5	22
30	Hole Migration in Telomereâ€Based Oligonucleotide Anions and Gâ€Quadruplexes. Chemistry - A European Journal, 2019, 25, 16114-16119.	3.3	7
31	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A36.	5.1	11
32	Radiation transport and scaling of optical depth in Nd:YAG laser-produced microdroplet-tin plasma. Applied Physics Letters, 2019, 115, 124101.	3.3	25
33	The Sequence of Coronene Hydrogenation Revealed by Gas-phase IR Spectroscopy. Astrophysical Journal, 2019, 875, 27.	4.5	20
34	Charge-Exchange Emission from Hydrogen-Like Carbon lons Colliding with Water Molecules. Atoms, 2019, 7, 17.	1.6	4
35	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A37.	5.1	21
36	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A35.	5.1	14

#	Article	IF	CITATIONS
37	An empirical analysis of alleged misunderstandings of coefficient alpha. International Journal of Social Research Methodology: Theory and Practice, 2019, 22, 351-364.	4.4	52
38	Soft Xâ€ray Spectroscopy as a Probe for Gasâ€Phase Protein Structure: Electron Impact Ionization from Within. Chemistry - A European Journal, 2018, 24, 7631-7636.	3.3	23
39	Short-wavelength out-of-band EUV emission from Sn laser-produced plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 045005.	1.5	27
40	Power-law scaling of plasma pressure on laser-ablated tin microdroplets. Physics of Plasmas, 2018, 25, .	1.9	37
41	Sn ion energy distributions of ns- and ps-laser produced plasmas. Plasma Sources Science and Technology, 2018, 27, 045001.	3.1	20
42	Energy-level structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Sn</mml:mi><td>เrอมร><mm< td=""><td>nl7mrow><m< td=""></m<></td></mm<></td></mml:mrow></mml:msup></mml:math>	เr อม ร> <mm< td=""><td>nl7mrow><m< td=""></m<></td></mm<>	nl 7 mrow> <m< td=""></m<>
43	Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets. Physical Review Applied, 2018, 10, .	3.8	30
44	Near-Edge Soft X-ray Absorption Mass Spectrometry of Protonated Melittin. Journal of the American Society for Mass Spectrometry, 2018, 29, 2138-2151.	2.8	6
45	Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair. Journal of Applied Physics, 2018, 124, .	2.5	13
46	Atomic hydrogen interactions with gas-phase coronene cations: hydrogenation <i>versus</i> fragmentation. Physical Chemistry Chemical Physics, 2018, 20, 22427-22438.	2.8	22
47	Physics of Laser-Produced Plasma Sources of Extreme Ultraviolet Radiation. , 2018, , .		O
48	Cavitation-induced expansion dynamics of tin microdroplet target in EUV light sources. , 2018, , .		0
49	lon distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target. Journal of Applied Physics, 2017, 121, 103301.	2.5	10
50	Optical spectroscopy of complex open- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn><mml:mi>d</mml:mi></mml:math> <mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>2.5</td><td>37 nl:mrow><m< td=""></m<></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow>	2.5	37 nl:mrow> <m< td=""></m<>
51	Physical Review A, 2017, 95, . Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range. Physical Chemistry Chemical Physics, 2017, 19, 18321-18329.	2.8	11
52	Radical-driven processes within a peptidic sequence of type I collagen upon single-photon ionisation in the gas phase. Physical Chemistry Chemical Physics, 2017, 19, 22895-22904.	2.8	17
53	A comparative VUV absorption mass-spectroscopy study on protonated peptides of different size. Physical Chemistry Chemical Physics, 2017, 19, 20608-20618.	2.8	14
54	Video instruction with explanation to another person for intellectually disabled students. Journal of Computer Assisted Learning, 2017, 33, 606-620.	5.1	1

#	Article	IF	CITATIONS
55	Statistical Reasoning Ability, Self-Efficacy, and Value Beliefs in a Reform Based University Statistics Course. Electronic Journal of Research in Educational Psychology, 2017, 9, 49-72.	0.6	7
56	The sequence to hydrogenate coronene cations: A journey guided by magic numbers. Scientific Reports, 2016, 6, 19835.	3.3	46
57	Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Freeâ€Electron Laser Pulses. Angewandte Chemie, 2016, 128, 10899-10903.	2.0	0
58	Analysis of the fine structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Sn</mml:mi><td>mrāv5><m< td=""><td>ml#murow><m< td=""></m<></td></m<></td></mml:mrow></mml:msup></mml:math>	mr āv 5> <m< td=""><td>ml#murow><m< td=""></m<></td></m<>	ml#murow> <m< td=""></m<>
59	Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact. Physical Review Applied, 2016, 6, .	3.8	72
60	Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Freeâ€Electron Laser Pulses. Angewandte Chemie - International Edition, 2016, 55, 10741-10745.	13.8	13
61	Near edge X-ray absorption mass spectrometry of gas phase proteins: the influence of protein size. Physical Chemistry Chemical Physics, 2016, 18, 26213-26223.	2.8	34
62	An intense electrospray ionization source for soft X-ray photoionization of gas phase protein ions. Journal of Physics: Conference Series, 2015, 635, 112083.	0.4	2
63	H ₂ formation on PAHs in photodissociation regions: a high-temperature pathway to molecular hydrogen. Astronomy and Astrophysics, 2015, 579, A72.	5.1	46
64	Near edge X-ray absorption mass spectrometry on coronene. Journal of Chemical Physics, 2015, 142, 024308.	3.0	15
65	Electron capture and deprotonation processes observed in collisions between Xe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow wml:mrow=""></mml:mrow></mml:msup><td>2.5</td><td>9</td></mml:math>	2.5	9
66	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow ><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup> charge-collisions with H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow< td=""><td>exchange</td><td></td></mml:mrow<></mml:msup></mml:math 	exchange	

#	Article	IF	CITATIONS
73	Angular differential studies of electron transfer in collisions of He-like ions with Na(3s): The role of electron saddle crossings. Physical Review A, 2013, 87, .	2.5	6
74	Fragmentation of protonated oligonucleotides by energetic photons and C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mi>q</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:math> ions. Physical Review A, 2013, 87, .	2.5	33
75	Oscillatory patterns in angular differential ion-atom charge exchange cross sections: The role of electron saddle swaps. , 2013, , .		1
76	Ion–polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 245201.	1.5	22
77	Towards imaging of ultrafast molecular dynamics using FELs. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 164029.	1.5	22
78	Areal density effects on the blocking of 3-keV Ne7+ions guided through nanocapillaries in polymers. Physical Review A, 2013, 88, .	2.5	15
79	Action Spectroscopy of Gas-Phase Peptide Ions with Energetic Photons. Physical Chemistry in Action, 2013, , 209-226.	0.6	1
80	Evidence of electron saddle swap oscillations in angular differential ion–atom charge exchange cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 175201.	1.5	9
81	Kinetic-energy-driven enhancement of secondary-electron yields of highly charged ions impinging on thin films of C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>60</mml:mn></mml:msub></mml:math> on Au. Physical Review A. 2012. 86	2.5	1
82	Influence of the environment on the fragmentation of amino acids provoked by low-energy ions. Journal of Physics: Conference Series, 2012, 388, 102052.	0.4	0
83	Dynamics of ion guiding through nanocapillaries in insulating polymers. Journal of Physics: Conference Series, 2012, 388, 012049.	0.4	2
84	Interaction of nucleobase clusters with multiply charged ions: Insight into base pairing. Journal of Physics: Conference Series, 2012, 388, 102050.	0.4	0
85	Electron transfer and ionization in collisions of He-like ions with Na(3s) and Na(3p). Journal of Physics: Conference Series, 2012, 388, 082024.	0.4	0
86	Length effects in VUV photofragmentation of protonated peptides. Physical Chemistry Chemical Physics, 2012, 14, 4351.	2.8	21
87	State-selective electron transfer and ionization in collisions of highly charged ions with ground-state Na(3s) and laser-excited Na*(3p). Physical Review A, 2012, 85, .	2.5	11
88	Near-Edge X-ray Absorption Mass Spectrometry of a Gas-Phase Peptide. Journal of Physical Chemistry A, 2012, 116, 10745-10751.	2.5	44
89	HYDROGENATION OF PAH CATIONS: A FIRST STEP TOWARD H ₂ FORMATION. Astrophysical Journal Letters, 2012, 761, L33.	8.3	36
90	Activation energies for fragmentation channels of anthracene dicationsâ€"experiment and theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 215201.	1.5	20

#	Article	IF	CITATIONS
91	Cometary charge exchange diagnostics in UV and Xâ€ray. Astronomische Nachrichten, 2012, 333, 335-340.	1.2	5
92	Photodissociation of protonated leucine-enkephalin in the VUV range of 8–40 eV. Journal of Chemical Physics, 2011, 134, 024314.	3.0	77
93	Heavy ion induced damage to plasmid DNA: plateau region vs. spread out Bragg-peak. European Physical Journal D, 2011, 63, 359-367.	1.3	18
94	Ionâ€Induced Fragmentation of Amino Acids: Effect of the Environment. ChemPhysChem, 2011, 12, 930-936.	2.1	44
95	Fast side-chain losses in keV ion-induced dissociation of protonated peptides. International Journal of Mass Spectrometry, 2011, 299, 64-70.	1.5	24
96	Electron emission yields from boron-like Ar ions impinging on Au(100). Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1203-1207.	1.4	5
97	n-Selective Single Capture Following Xe[sup 18+] And Xe[sup 54+] Impact On Na(3s) And Naâ^—(3p)., 2011,,.		O
98	Highly-charged-ion-induced electron emission from C60thin films. Physical Review A, 2011, 84, .	2.5	6
99	Evidence of blocking effects on 3-keV Ne <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mn>//mml:mo></mml:mn></mml:mrow></mml:msup></mml:mrow><td>2.5 ath>ions</td><td>47</td></mml:math>	2.5 ath>ions	47
100	IONIZATION AND FRAGMENTATION OF ANTHRACENE UPON INTERACTION WITH keV PROTONS AND α PARTICLES. Astrophysical Journal, 2010, 708, 435-444.	4.5	61
101	Plasmid DNA damage by heavy ions at spread-out Bragg peak energies. European Physical Journal D, 2010, 60, 51-58.	1.3	9
102	Guided transmission of 3-keV Ne7+ions through nanocapillaries in insulating polymers: Dependence on the capillary diameter. Physical Review A, 2010, 82, .	2.5	36
103	Isotope effects on the charge transfer into then=1, 2, and 3 shells of He2+in collisions with H, D, and T. Physical Review A, 2010, 81, .	2.5	18
104	Peptide fragmentation by keV ion-induced dissociation. Physical Chemistry Chemical Physics, 2010, 12, 3376.	2.8	39
105	Guided transmission of Ne7+ions through nanocapillaries in insulating polymers: Scaling laws for projectile energies up to 50 keV. Physical Review A, 2009, 79, .	2.5	42
106	Dynamic properties of ion guiding through nanocapillaries in an insulating polymer. Physical Review A, 2009, 79, .	2.5	64
107	Time evolution of ion guiding through nanocapillaries in a PET polymer. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 669-673.	1.4	8
108	Atomic electron energy spectra of slow He2+ ions impinging on metallic surfaces. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 594-597.	1.4	2

#	Article	IF	CITATIONS
109	Kinetic energy releases of small amino acids upon interaction with keV ions. European Physical Journal D, 2009, 51, 81-87.	1.3	26
110	Stability of pure, mixed and nanohydrated clusters of small biomolecules. Journal of Physics: Conference Series, 2009, 194, 102031.	0.4	0
111	Interactions of multiply charged ions with trapped complex biomolecular ions. Journal of Physics: Conference Series, 2009, 194, 102006.	0.4	O
112	Ion induced fragmentation of biomolecular systems at low collision energies. Journal of Physics: Conference Series, 2009, 194, 012048.	0.4	3
113	Fragmentation and ionization dynamics of polycyclic aromatic hydrocarbons. Journal of Physics: Conference Series, 2009, 194, 102003.	0.4	0
114	Role of charge patches in ion guiding through nanocapillaries in a PET polymer. Journal of Physics: Conference Series, 2009, 194, 132031.	0.4	0
115	HITRAP – a facility for experiments on heavy highly charged ions and on antiprotons. Journal of Physics: Conference Series, 2009, 194, 142007.	0.4	3
116	Precise Determination of 2â€Deoxyâ€ <scp>D</scp> â€Ribose Internal Energies after keV Proton Collisions. ChemPhysChem, 2008, 9, 1254-1258.	2.1	35
117	Collision induced fragmentation of free sulfur clusters. International Journal of Mass Spectrometry, 2008, 277, 197-205.	1.5	7
118	Fragmentation of isolated and nanosolvated biomolecular systems. , 2008, , .		2
119	Fragmentation of \hat{l}_{\pm} - and \hat{l}^2 -alanine molecules by ions at Bragg-peak energies. Journal of Chemical Physics, 2008, 128, 074306.	3.0	41
120	Single-electron capture in keV Ar ^{15+…18+} +He collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 195203.	1.5	16
121	Laser-frequency locking using light-pressure-induced spectroscopy in a calcium beam. Physical Review A, 2008, 77, .	2.5	2
122	Isomeric effects in ion-induced fragmentation of \hat{l}_{\pm} - and \hat{l}^2 -alanine. Journal of Physics: Conference Series, 2008, 101, 012006.	0.4	3
123	Interactions of neutral and singly charged keV atomic particles with gas-phase adenine molecules. Inurnal of Chemical Physics, 2007, 127, 034301 Electron capture in collisions between mill:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.0	42
124	display="inline"> <mml:msup><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>6</mml:mn><mml:mo>+</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mi< td=""><td>nml:msup: 2.5</td><td>> 22</td></mml:mi<></mml:msub></mml:mrow></mml:msup>	nml:msup: 2.5	> 22
125	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi mathvariant="normal"> Enormous Isotope Effects on Charge Transfer in Slow Collisions of He[sup 2+] with H, D, and T. AIP Conference Proceedings, 2007, , .</mml:mi>	0.4	O
126	State selective capture by highly charged Xe ions. Journal of Physics: Conference Series, 2007, 58, 199-202.	0.4	9

#	Article	IF	Citations
127	Strong Isotope Effects on the Charge Transfer in Slow Collisions ofHe2+with Atomic Hydrogen, Deuterium, and Tritium. Physical Review Letters, 2007, 99, 103201.	7.8	29
128	Spectral analysis of the Chandracomet survey. Astronomy and Astrophysics, 2007, 469, 1183-1195.	5.1	85
129	Investigation of spin-polarized surfaces with multiple electron capture spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2007, 258, 125-129.	1.4	4
130	Chandra observations of Comet 9P/Tempel 1 during the Deep Impact campaign. Icarus, 2007, 191, 295-309.	2.5	6
131	Chandra observations of Comet 9P/Tempel 1 during the Deep Impact campaign. Icarus, 2007, 190, 391-405.	2.5	16
132	Quantification of ion-induced molecular fragmentation of isolated 2-deoxy-d-ribose molecules. Physical Chemistry Chemical Physics, 2006, 8, 1922-1928.	2.8	64
133	Ion-induced ionization and fragmentation of DNA building blocks. Physica Scripta, 2006, 73, C113-C117.	2.5	27
134	Charge Exchange Emission from Solar Wind Helium Ions. Astrophysical Journal, 2006, 642, 593-605.	4.5	50
135	Atom Trap Trace Analysis of Ca Isotopes. Hyperfine Interactions, 2006, 162, 167-172.	0.5	3
136	Ion-Induced Biomolecular Radiation Damage: From Isolated Nucleobases to Nucleobase Clusters. ChemPhysChem, 2006, 7, 2339-2345.	2.1	82
137	Identification of distinct two-electron transfer processes in O 6+ + Na collisions. Europhysics Letters, 2006, 74, 992-998.	2.0	4
138	Single ionization of Na(3s) and Na*(3p) by low energy ion impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 2021-2029.	1.5	5
139	Multielectron removal processes inHe2++Nacollisions. Physical Review A, 2006, 73, .	2.5	1
140	Probing local spin ordering at surfaces byHe2+ions. Physical Review A, 2006, 74, .	2.5	17
141	Local Spin Polarization at Surfaces Probed by Hollow Atoms. Physical Review Letters, 2006, 96, 177601.	7.8	17
142	PROBING THE SOLAR WIND WITH COMETARY X-RAY AND FAR-ULTRAVIOLET EMISSION. , 2006, , .		0
143	Atom Trap Trace Analysis of Ca Isotopes. , 2006, , 167-172.		0
144	ChandraObservations of Comet 2P/Encke 2003: First Detection of a Collisionally Thin, Fast Solar Wind Charge Exchange System. Astrophysical Journal, 2005, 635, 1329-1347.	4.5	44

#	Article	IF	Citations
145	Experimental observation of reduced electronic stopping in photo-excited C60. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, L55-L62.	1.5	2
146	Surface spin polarization in Fe(110) and Ni(110). Nuclear Instruments $\&$ Methods in Physics Research B, 2005, 230, 356-360.	1.4	6
147	Transfer of spin polarization in ion-surface scattering. Nuclear Instruments & Methods in Physics Research B, 2005, 232, 1-7.	1.4	10
148	Ion–biomolecule interactions and radiation damage. Nuclear Instruments & Methods in Physics Research B, 2005, 233, 62-69.	1.4	36
149	Fingerprints of charge exchange between He2+ and water molecules. Nuclear Instruments & Methods in Physics Research B, 2005, 235, 358-361.	1.4	4
150	Probing the interaction between comets and the solar wind. , 2005, , .		0
151	State selective single-electron capture in O6++ Na collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 3163-3172.	1.5	13
152	Single-atom detection of calcium isotopes by atom-trap trace analysis. Physical Review A, 2005, 71, .	2.5	15
153	Charge exchange and dissociative processes in collisions of slowHe2+ions withH2Omolecules. Physical Review A, 2005, 71, .	2.5	33
154	Response of Polyatomic Molecules to Ultrastrong Laser- and Ion-Induced Fields. Physical Review Letters, 2005, 94, 233001.	7.8	22
155	Dissociation of water molecules upon keV H+- and Heq+-induced ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 4085-4094.	1.5	52
156	Inner- and outer-shell electron dynamics in proton collisions with sodium atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 2353-2369.	1.5	61
157	Single ionization and electron capture in He2++Na collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 1987-1998.	1.5	17
158	X-Ray and Far-Ultraviolet Emission from Comets: Relevant Charge Exchange Processes. Physica Scripta, 2004, 70, C17-C20.	2.5	8
159	Direct observation of pure one-electron capture from the target inner shell in low-energyp+Nacollisions. Physical Review A, 2004, 70, .	2.5	8
160	Charge driven fragmentation of biologically relevant molecules. International Journal of Mass Spectrometry, 2004, 233, 173-179.	1.5	45
161	lonization and Fragmentation Modes of Nucleobases after Collisions with Multiply Charged Ions. Physica Scripta, 2004, 110, 336.	2.5	25
162	Catching Some Sun: Probing the Solar Wind with Cometary X-Ray and Far-Ultraviolet Emission. Astrophysical Journal, 2004, 606, L81-L84.	4.5	45

#	Article	IF	Citations
163	Multiple ionization and fragmentation of the DNA base thymine by interaction with C $q+$ ions. European Physical Journal D, 2003, 24, 161-164.	1.3	42
164	Multi-electron processes in slow He 2+ \hat{a} \in "Na collisions measured with MOTRIMS. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 560-567.	1.4	10
165	TRIμP – a radioactive isotope trapping facility under construction at KVI. Nuclear Instruments & Methods in Physics Research B, 2003, 204, 532-535.	1.4	8
166	TRIμP — A radioactive isotope trapping facility at KVI. Nuclear Physics A, 2003, 721, C1107-C1110.	1.5	4
167	TRIμP â€" trapped radioactive isotopes: μicrolaboratories for fundamental physics. Nuclear Physics, Section B, Proceedings Supplements, 2003, 117, 939-941.	0.4	1
168	Charge Driven Fragmentation of Nucleobases. Physical Review Letters, 2003, 91, 053401.	7.8	121
169	Photon Emission Spectroscopy of Electron Capture and Excitation by Multiply Charged Ions. , 2003, , 169-192.		1
170	TRIμP - Trapped Radioactive Isotopes: μicrolaboratories for fundamental Physics., 2003,, 939-941.		0
171	Charge Localization in Collision-Induced Multiple Ionization of van der Waals Clusters with Highly Charged Ions. Physical Review Letters, 2002, 88, 143401.	7.8	35
172	CqÂ-induced excitation and fragmentation of uracil: effects of the projectile electronic structure. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 4373-4381.	1.5	67
173	Recoil Momentum Spectroscopy of Highly Charged Ion Collisions on Magneto-Optically Trapped Na. Physical Review Letters, 2001, 87, 123202.	7.8	53
174	Projectile atomic-number effect on ion-induced fragmentation and ionization of fullerenes. Physical Review A, 2001, 63, .	2.5	40
175	Electronic stopping in ion–fullerene collisions. Applied Physics A: Materials Science and Processing, 2001, 72, 281-287.	2.3	9
176	Low-Energy State-Selective Charge Transfer by Multiply Charged Ions. Physical Review Letters, 2001, 86, 616-619.	7.8	31
177	HCI-Induced Ionization and Fragmentation of Fullerenes and Organic Molecules. Physica Scripta, 2001, T92, 51-56.	2.5	0
178	Molecular fragmentation by slow highly charged ion impact. Europhysics Letters, 2000, 49, 41-47.	2.0	16
179	Laser cooled targets and recoil ion momentum spectroscopy for fundamental physics studies. , 2000, 127, 533-536.		10
180	Hydrogenated carbon clusters produced by highly charged ion impact on solid. European Physical Journal D, 2000, 12, 323-327.	1.3	12

#	Article	IF	Citations
181	Collisions of slow multicharged ions with atoms, molecules, clusters and surfaces. AIP Conference Proceedings, 2000, , .	0.4	O
182	State-selective electron-capture cross section measurements for low-energy collisions of He-like ions on H2. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 5275-5296.	1.5	36
183	Neutral beam stopping and emission in fusion plasmas I: deuterium beams. Plasma Physics and Controlled Fusion, 2000, 42, 781-806.	2.1	69
184	ZOscillations in Ion-Induced Fullerene Fragmentation. Physical Review Letters, 2000, 84, 4076-4079.	7.8	37
185	Sputtering of hollow atoms from carbon surfaces. Physical Review A, 2000, 62, .	2.5	8
186	Experimental Study of the Excitation Mechanisms in Heq+-Fullerene Collisions. Physica Scripta, 1999, T80, 207.	2.5	2
187	Strong Velocity Effects in Collisions ofHe+with Fullerenes. Physical Review Letters, 1999, 82, 73-76.	7.8	73
188	Five-body calculations of D2 fragmentation by Xe19+impact. Physical Review A, 1999, 60, 2112-2117.	2.5	13
189	Lithium excitation by slowH+andHe2+ions. Physical Review A, 1999, 60, 4627-4634.	2.5	3
190	Electronic versus vibrational excitation in Heq+ collisions with fullerenes. International Journal of Mass Spectrometry, 1999, 192, 245-257.	1.5	34
191	Hollow atom dynamics on thin-film covered surfaces. Nuclear Instruments & Methods in Physics Research B, 1999, 157, 304-308.	1.4	3
192	DATABASE FOR INELASTIC COLLISIONS OF LITHIUM ATOMS WITH ELECTRONS, PROTONS, AND MULTIPLY CHARGED IONS. Atomic Data and Nuclear Data Tables, 1999, 72, 239-273.	2.4	56
193	L-shell filling ofN6+andO7+ions from a clean and LiF-covered Au(111) surface. Physical Review A, 1999, 60, 3800-3808.	2.5	4
194	Hollow Atom Dynamics on Thin Films. Physica Scripta, 1999, T80, 66.	2.5	2
195	Formation of hollow atoms at metal- and insulator surfaces. Applied Physics A: Materials Science and Processing, 1998, 67, 705-710.	2.3	1
196	Energy loss of keV He2+ scattered off an A1(110) surface. Surface Science, 1998, 409, 541-552.	1.9	5
197	Spin-sensitive electron capture into excited states as a probe to investigate magnetic surfaces. Surface Science, 1998, 398, 84-90.	1.9	8
198	Hollow Atom Dynamics on LiF Covered Au(111): Role of the Surface Electronic Structure. Physical Review Letters, 1998, 81, 1219-1222.	7.8	30

#	Article	IF	Citations
199	Collisions of with neutral: Charge transfer and fragmentation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 1321-1331.	1.5	42
200	Charge exchange from $D(n=2)$ atoms to low-Zreceiver ions. Plasma Physics and Controlled Fusion, 1998, 40, 1541-1550.	2.1	46
201	State-selective electron-capture measurements forN4+-H andN4+-H2collisions. Physical Review A, 1998, 57, 221-226.	2.5	26
202	lon–atom data for fusion research. , 1998, , .		0
203	The use of atomic and molecular data in fusion plasma diagnostics. , 1998, , .		0
204	Dissociation of CO induced by ions: II. Dissociation pathways and states. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 5849-5860.	1.5	23
205	Dissociation of CO induced by ions: I. Fragmentation and kinetic energy release spectra. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 5833-5847.	1.5	31
206	Comment on "Observation of Hollow Atoms or Ions above Insulator and Metal Surfaces". Physical Review Letters, 1997, 79, 2590-2590.	7.8	10
207	Low-energy electron capture by C4+ions from atomic hydrogen. Physical Review A, 1997, 56, 426-431.	2.5	35
208	SURFACE MAGNETISM INVESTIGATED BY LOW ENERGY ION SCATTERING IN THE GRAZING INCIDENCE MODE. Surface Review and Letters, 1997, 04, 1039-1042.	1.1	0
209	Kinetic energy release of dissociating CO3+ions produced in collisions of multiply charged ions with CO. Physica Scripta, 1997, T73, 267-269.	2.5	0
210	Surface magnetism studied by polarized light emission after He+ scattering. Journal of Magnetism and Magnetic Materials, 1997, 168, 249-256.	2.3	16
211	Energy loss and charge state distribution of reflected ions in N6,7+ ion-Al(110) surface collisions. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 116-119.	1.4	11
212	Circularly polarized photon emission spectroscopy of keV ions scattering off (un-)magnetized surfaces. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 53-58.	1.4	5
213	First state selective electron capture measurements with trapped highly charged ions. , 1997, 108, 121-130.		2
214	Gathering and evaluation of state selective capture cross sections for plasma diagnostics. AIP Conference Proceedings, 1996, , .	0.4	1
215	Mitochondrial inheritance in <i>Aspergillus nidulans</i> . Genetical Research, 1996, 67, 93-100.	0.9	20
216	lon storage at eV energies in an octopole ring. Hyperfine Interactions, 1996, 99, 193-200.	0.5	6

#	Article	IF	Citations
217	On the formation of hollow atoms in front of an insulating LiF surface. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 237-241.	1.4	15
218	Energy loss of highly charged ions on an aluminum surface. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 165-167.	1.4	14
219	Velocity and Charge State Dependences of Molecular Dissociation Induced by Slow Multicharged Ions. Physical Review Letters, 1996, 77, 3339-3342.	7.8	49
220	Multiple target ionization in collisions between highly charged ions and Ar. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 85-95.	1.5	10
221	Anisotropy and polarization in charge changing collisions of with Na(3s) and laser aligned Na(3p). Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 2819-2836.	1.5	17
222	State-selective charge transfer in slow collisions of with H and. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 1397-1408.	1.5	15
223	Charge equilibration pathways following collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 6143-6153.	1.5	10
224	A novel family of linear plasmids with homology to plasmid pAL2-1 of Podospora anserina. Molecular Genetics and Genomics, 1995, 246, 638-647.	2.4	16
225	Cross sections for HeII($n = 4 \text{ ât'}$ $n = 3$) and CVI($n = 7 \text{ ât'}$ $n = 6$) emission for charge exchange diagnostics at tokamaks. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 195-198.	1.4	2
226	Line emission and anisotropy effects in C6+ electron capture from Li(2s), Lia^—(2p) and. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 214-217.	1.4	3
227	Target excitation in bare ion collisions studied by electron target ion coincidences. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 307-311.	1.4	2
228	Dissociation of H2 and CO by slow multiply charged ions. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 389-391.	1.4	4
229	Probing hollow atom states formed during impact of highly charged ions on surfaces: N6,7+ and O7+ on Al(110) and Si(100). Nuclear Instruments & Methods in Physics Research B, 1995, 98, 436-440.	1.4	22
230	Scattering potential investigation in highly charged ion-surface interactions. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 454-457.	1.4	3
231	Negative ion production in multicharged ion-surface interactions. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 458-461.	1.4	8
232	Studies of line emission from collisions of multiply charged ions on He and Li targets for tokamak diagnostics. AIP Conference Proceedings, 1995, , .	0.4	0
233	Do Hollow Atoms Exist in Front of an Insulating LiF(100) Surface?. Physical Review Letters, 1995, 75, 217-219.	7.8	66
234	Polarized light emission in keV He2++Na(3s) collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 3271-3282.	1.5	35

#	Article	IF	CITATIONS
235	Velocity dependence of KLLAuger emission from hollow atoms formed during collisions of hydrogenic N6+ions on surfaces. Physical Review A, 1995, 51, 3873-3882.	2.5	38
236	He2+-H2collisions: non-dissociative and dissociative one-electron capture. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 2021-2031.	1.5	29
237	A coincidence study of multiple-electron capture in15N7+-Ar collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 2557-2567.	1.5	19
238	State-selective electron capture in He2+-H2collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 2269-2276.	1.5	14
239	He2+-He collisions: one-electron capture and target-ion excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 3475-3488.	1.5	19
240	Anisotropy effects in electron capture byO6+from alignedNa*(3p). Physical Review Letters, 1994, 72, 1628-1631.	7.8	28
241	State-selective charge transfer between He-like ions and He. Physical Review A, 1994, 49, 363-373.	2.5	17
242	Coster-Kronig transitions in hollow atoms created during highly charged ion-surface interactions. Physical Review Letters, 1994, 73, 786-789.	7.8	35
243	Additive action of partial heterokaryon incompatibility (partial-het) genes in Aspergillus nidulans. Current Genetics, 1994, 26, 233-237.	1.7	19
244	Atomic structure calculations of KLLAuger spectra from highly charged ion–solid-surface collisions. Physical Review A, 1994, 50, 540-552.	2.5	41
245	The interaction of hydrogenic ions with metal and semiconductor surfaces. Surface Science, 1994, 313, 355-364.	1.9	28
246	Simultaneous electron capture and target ion excitation in collisions of C4+ and N5+ on He. Zeitschrift $F\tilde{A}\frac{1}{4}r$ Physik D-Atoms Molecules and Clusters, 1993, 25, 209-215.	1.0	9
247	Electron capture from Li by B5+, N5+and Be4+ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 2029-2040.	1.5	20
248	He2+-He collisions: one-electron capture versus electron removal and target-ion excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, L619-L624.	1.5	11
249	Strong velocity dependence of electron capture in collisions between alignedNa*(3p) andHe2+. Physical Review Letters, 1993, 71, 513-516.	7.8	40
250	State-selective electron capture in slow collisions of C6+and O6+with He. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 463-474.	1.5	15
251	Electron capture and excitation in He2+-Na collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 3155-3164.	1.5	14
252	Absolute visible light emission cross sections for electron capture from Li atoms by slow, highly charged ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 2597-2606.	1.5	24

#	Article	IF	CITATIONS
253	Line emission from C6+, O8+ + Li electron capture collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 4241-4247.	1.5	41
254	State-selective electron capture and core excitation in slow Ne6+-He collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 4851-4864.	1.5	11
255	Cross sections for I-selective electron capture into the He+(n=4) shell in intermediate energy collisions of He2+with H and H2. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 1245-1255.	1.5	21
256	Electron capture into He+(41) states in collisions of He2+on Li. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 2587-2596.	1.5	18
257	Photons shedding light upon basic charge exchange processes. Zeitschrift FŽr Physik D-Atoms Molecules and Clusters, 1991, 21, S81-S85.	1.0	7
258	He2+-H collisions: experimental charge exchange cross sections and their relevance for alpha particle diagnostics at JET. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1991, 21, S163-S164.	1.0	1
259	Core-changing versus core-conserving charge transfer in Ne6+-He collisions. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 21, S255-S256.	1.0	3
260	Investigation of thermal and slowing-down alpha particles on JET using charge-exchange spectroscopy. Plasma Physics and Controlled Fusion, 1991, 33, 1805-1824.	2.1	37
261	State selective electron capture into nl subshells in slow collisions of C5+and N6+with He and H2studied by photon emission spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 2543-2558.	1.5	36
262	State-selective electron capture in collisions of He2+with H. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 4025-4048.	1.5	65
263	Photons shedding light upon basic charge exchange processes. , 1991, , 81-85.		1
264	Core-changing versus core-conserving charge transfer in Ne6+-He collisions., 1991,, 255-256.		0
265	He2+-H collisions: experimental charge exchange cross sections and their relevance for alpha particle diagnostics at JET., 1991,, 163-164.		0
266	State-selective charge transfer in slow collisions of C4+with H and H2. Physical Review A, 1990, 41, 4800-4808.	2.5	64
267	Electron capture into He+(2p) in low-energy collisions of He2+with atomic and molecular hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, L603-L607.	1.5	24
268	State Selective Electron Capture in Collisions of C6+and O8+on Atomic and Molecular Hydrogen Studied by Photon Emission Spectroscopy. Physica Scripta, 1989, T28, 81-90.	2.5	28
269	Review of the Data Base for Collisions of Cq+ and Oq+ Ions with H, H2 and He. Physica Scripta, 1989, T28, 8-9.	2.5	3
270	PHOTONS SHEDDING LIGHT UPON CHARGE EXCHANGE PROCESSES IN COLLISIONS OF 24 keV O3+ WITH ATOMIC HYDROGEN. Journal De Physique Colloque, 1989, 50, C1-349-C1-352.	0.2	2

#	Article	IF	CITATIONS
271	ALIGNMENT OF P ⁻ AND D-STATES OF THREE-ELECTRON CARBON IONS PRODUCED IN COLLISIONS OF C ⁴⁺ (1s ²) WITH H ₂ . Journal De Physique Colloque, 1989, 50, C1-387-C1-392.	0.2	0
272	Emission cross sections for fully stripped carbon colliding with atomic hydrogen. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1988, 8, 57-61.	1.0	9
273	Comment on â€~ã€~Evidence for correlated double-electron capture in low-energy collisions ofO6+with He''. Physical Review Letters, 1987, 58, 957-957.	7.8	49
274	Electron capture in collisions of O8+ with H: Absolute line emission cross sections. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 124, 73-76.	2.1	6
275	Two- and more-electron transitions in slow multicharged ion-He collisions. Nuclear Instruments & Methods in Physics Research B, 1987, 23, 104-108.	1.4	21
276	Sputtering of silicon by multiply charged ions. Surface Science, 1986, 177, L939-L946.	1.9	69
277	Sputtering of silicon by multiply charged ions. Surface Science Letters, 1986, 177, L939-L946.	0.1	2
278	The 1983 atomic mass evaluation. Nuclear Physics A, 1985, 432, 185-362.	1.5	64
279	Present State of the Analysis of Nd i and Nd ii. Journal of the Optical Society of America, 1971, 61, 1335.	1.2	22
280	The scattering chamber of the BOL-system. Nuclear Instruments & Methods, 1971, 92, 161-172.	1.2	12
281	Rapid Method of Tracing Charged Particle Beams. Review of Scientific Instruments, 1968, 39, 1069-1069.	1.3	0
282	A Rapid Precision Wavelength Measuring Apparatus. Applied Optics, 1967, 6, 807.	2.1	13
283	Molecular hydrogen formation on interstellar PAHs through Eley-Rideal abstraction reactions. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	13