Filippos D Sofos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/17402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls. International Journal of Heat and Mass Transfer, 2009, 52, 735-743.	4.8	115
2	Effects of wall roughness on flow in nanochannels. Physical Review E, 2009, 79, 026305.	2.1	83
3	Effect of wall roughness on shear viscosity and diffusion in nanochannels. International Journal of Heat and Mass Transfer, 2010, 53, 3839-3846.	4.8	60
4	Surface wettability effects on flow in rough wall nanochannels. Microfluidics and Nanofluidics, 2012, 12, 25-31.	2.2	55
5	Unified description of size effects of transport properties of liquids flowing in nanochannels. International Journal of Heat and Mass Transfer, 2012, 55, 5087-5092.	4.8	49
6	Friction factor in nanochannel flows. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	47
7	Darcy-Weisbach friction factor at the nanoscale: From atomistic calculations to continuum models. Physics of Fluids, 2017, 29, .	4.0	34
8	Parameters Affecting Slip Length at the Nanoscale. Journal of Computational and Theoretical Nanoscience, 2013, 10, 648-650.	0.4	33
9	A quasi-continuum multi-scale theory for self-diffusion and fluid ordering in nanochannel flows. Microfluidics and Nanofluidics, 2014, 17, 1011-1023.	2.2	27
10	Current Trends in Fluid Research in the Era of Artificial Intelligence: A Review. Fluids, 2022, 7, 116.	1.7	27
11	Molecular dynamics simulations of ion separation in nano-channel water flows using an electric field. Molecular Simulation, 2019, 45, 1395-1402.	2.0	24
12	Molecular dynamics simulation on flows in nano-ribbed and nano-grooved channels. Heat and Mass Transfer, 2016, 52, 153-162.	2.1	21
13	Nanoscale slip length prediction with machine learning tools. Scientific Reports, 2021, 11, 12520.	3.3	18
14	Fluid Flow at the Nanoscale: How Fluid Properties Deviate from the Bulk. Nanoscience and Nanotechnology Letters, 2013, 5, 457-460.	0.4	18
15	A novel image processing method to determine the nutritional condition of lobsters. Micron, 2013, 45, 140-144.	2.2	17
16	How wall properties control diffusion in grooved nanochannels: a molecular dynamics study. Heat and Mass Transfer, 2013, 49, 1081-1088.	2.1	17
17	A combined clustering/symbolic regression framework for fluid property prediction. Physics of Fluids, 2022, 34, .	4.0	15
18	Machine learning symbolic equations for diffusion with physics-based descriptions. AIP Advances, 2022. 12	1.3	14

FILIPPOS D SOFOS

#	Article	IF	CITATIONS
19	Machine Learning Techniques for Fluid Flows at the Nanoscale. Fluids, 2021, 6, 96.	1.7	10
20	A Water/Ion Separation Device: Theoretical and Numerical Investigation. Applied Sciences (Switzerland), 2021, 11, 8548.	2.5	8
21	Effects of channel size, wall wettability, and electric field strength on ion removal from water in nanochannels. Scientific Reports, 2022, 12, 641.	3.3	8
22	Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow. Nanomaterials, 2020, 10, 2373.	4.1	6
23	Variation of Transport Properties Along Nanochannels: A Study by Non-equilibrium Molecular Dynamics. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 67-78.	0.2	4
24	An assessment of SPH simulations of sudden expansion/contraction 3-D channel flows. Computational Particle Mechanics, 0, , 1.	3.0	3
25	Teaching cinema with machinima. International Journal of Arts and Technology, 2020, 12, 155.	0.1	2
26	Fluid structure and system dynamics in nanodevices for water desalination. Desalination and Water Treatment, 2016, 57, 11561-11571.	1.0	1
27	Multi-parameter analysis of water flows in nanochannels. , 0, 125, 8-15.		1
28	Teaching cinema with machinima. International Journal of Arts and Technology, 2020, 12, 1.	0.1	0