
Chenyang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1740066/publications.pdf Version: 2024-02-01

CHENVANCL

#	Article	IF	CITATIONS
1	Pole-Converging Intrastage Bandwidth Extension Technique for Wideband Amplifiers. IEEE Journal of Solid-State Circuits, 2017, 52, 769-780.	5.4	75
2	An 88.5–110 GHz CMOS Low-Noise Amplifier for Millimeter-Wave Imaging Applications. IEEE Microwave and Wireless Components Letters, 2016, 26, 134-136.	3.2	65
3	A 0.044-mm ² 0.5-to-7-GHz Resistor-Plus-Source-Follower-Feedback Noise-Cancelling LNA Achieving a Flat NF of 3.3±0.45 dB. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 71-75.	3.0	52
4	A 0.061-mm² 1–11-GHz Noise-Canceling Low-Noise Amplifier Employing Active Feedforward With Simultaneous Current and Noise Reduction. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3093-3106.	4.6	27
5	A 93.4–104.8-GHz 57-mW Fractional-\${N}\$ Cascaded PLL With True In-Phase Injection-Coupled QVCO in 65-nm CMOS Technology. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 2370-2381.	4.6	20
6	Design of a Wideband Variable-Gain Amplifier With Self-Compensated Transistor for Accurate dB-Linear Characteristic in 65 nm CMOS Technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 4187-4198.	5.4	18
7	A Carrier Aggregation Transmitter Front End for 5-GHz WLAN 802.11ax Application in 40-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 264-276.	4.6	14
8	A 65nm CMOS carrier-aggregation transceiver for IEEE 802.11 WLAN applications. , 2016, , .		11
9	A 34-dB Dynamic Range 0.7-mW Compact Switched-Capacitor Power Detector in 65-nm CMOS. IEEE Transactions on Power Electronics, 2019, 34, 9365-9368.	7.9	11
10	Design and Analysis of \$D\$ -Band On-Chip Modulator and Signal Source Based on Split-Ring Resonator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1513-1526.	3.1	8
11	A Wideband dB-Linear Variable-Gain Amplifier With a Compensated Negative Pseudo-Exponential Generation Technique. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2809-2821.	4.6	8
12	A Low-Noise, Positive-Input, Negative-Output Voltage Generator for Low-to-Moderate Driving Capacity Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 3423-3436.	5.4	6
13	D-Band Surface-Wave Modulator and Signal Source with 40 dB Extinction Ratio and 3.7mW Output Power in 65 nm CMOS. , 2018, , .		5
14	Compact Switched-Capacitor Power Detector With Frequency Compensation in 65-nm CMOS. IEEE Access, 2020, 8, 34197-34203.	4.2	4
15	A Parallel Sliding-IF Receiver Front-End With Sub-2-dB Noise Figure for 5–6-GHz WLAN Carrier Aggregation. IEEE Journal of Solid-State Circuits, 2021, 56, 392-403.	5.4	4
16	A Bidirectional Nonlinearly Coupled QVCO With Passive Phase Interpolation for Multiphase Signals Generation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1480-1484.	3.1	4
17	MOSFET Small-Signal Model Considering Hot-Carrier Effect for Millimeter-Wave Frequencies. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 419-428.	2.2	3
18	A Wideband Variable-Gain Amplifier with a Negative Exponential Generation in 40-nm CMOS Technology. , 2020, , .		3

#	Article	IF	CITATIONS
19	A 0.0078mm2 3.4mW Wideband Positive-feedback-Based Noise-Cancelling LNA in 28nm CMOS Exploiting \$oldsymbol{C}_{mathrm{m}}\$ Boosting. , 2022, , .		3
20	Multi-Channel FSK Inter/Intra-Chip Communication by Exploiting Field-Confined Slow-Wave Transmission Line. , 2020, , .		2