
Danilo Orlando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1739671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innovative Solutions Based on the EM-Algorithm for Covariance Structure Detection and Classification in Polarimetric SAR Images. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59, 209-227.	4.7	2
2	Advances in Adaptive Radar Detection and Range Estimation. , 2022, , .		7
3	A GLRT-like CFAR detector for heterogeneous environments. Signal Processing, 2022, 194, 108401.	3.7	10
4	Knowledge-Aided Detectors. , 2022, , 45-102.		0
5	Detectors with Enhanced Range Estimation Capabilities. , 2022, , 103-153.		Ο
6	Unsupervised Sparse Unmixing of Atmospheric Trace Gases From Hyperspectral Satellite Data. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	6
7	Clutter Edges Detection Algorithms for Structured Clutter Covariance Matrices. IEEE Signal Processing Letters, 2022, 29, 642-646.	3.6	7
8	Learning Strategies for the Interference Covariance Structure Based on a Bayesian Approach. IEEE Signal Processing Letters, 2022, 29, 1182-1186.	3.6	1
9	Learning Strategies for Radar Clutter Classification. IEEE Transactions on Signal Processing, 2021, 69, 1070-1082.	5.3	34
10	Adaptive Radar Detection in the Presence of Multiple Alternative Hypotheses Using Kullback-Leibler Information Criterion-Part II: Applications. IEEE Transactions on Signal Processing, 2021, 69, 3742-3754.	5.3	21
11	Innovative Two-Stage Radar Detection Architectures in Adverse Scenarios Using Two Training Data Sets. IEEE Signal Processing Letters, 2021, 28, 1165-1169.	3.6	10
12	Adaptive Detection of Dim Maneuvering Targets in Adjacent Range Cells. IEEE Signal Processing Letters, 2021, 28, 633-637.	3.6	3
13	Adaptive Radar Detection in the Presence of Multiple Alternative Hypotheses Using Kullback-Leibler Information Criterion-Part I: Detector Designs. IEEE Transactions on Signal Processing, 2021, 69, 3730-3741.	5.3	27
14	A Channel Classification Scheme Accounting for Nakagami- <i>m</i> Shadowing and FTR Model. IEEE Wireless Communications Letters, 2021, 10, 2289-2293.	5.0	1
15	A Track-Before-Detect Strategy Based on Sparse Data Processing for Air Surveillance Radar Applications. Remote Sensing, 2021, 13, 662.	4.0	15
16	Radar Clutter Classification Using Expectation-Maximization Method. , 2021, , .		1
17	Adaptive strategies for clutter edge detection in radar. Signal Processing, 2021, 186, 108127.	3.7	15
18	Design and Experimental Assessment of Detection Schemes for Air Interface Attacks in Adverse Scenarios, IEEE Wireless Communications Letters, 2021, 10, 1989-1993	5.0	2

#	Article	IF	CITATIONS
19	Performance Analysis of the Generalized Likelihood Ratio Test in General Phased Array Radar Configuration. IEEE Transactions on Signal Processing, 2021, 69, 4544-4555.	5.3	18
20	Adaptive Radar Detection and Classification Algorithms for Multiple Coherent Signals. IEEE Transactions on Signal Processing, 2021, 69, 560-572.	5.3	24
21	Radar Environment Classificator with Clustering Capabilities. , 2021, , .		Ο
22	Persymmetric adaptive detection in subspace interference plus gaussian noise. Signal Processing, 2020, 167, 107316.	3.7	14
23	New ECCM Techniques Against Noiselike and/or Coherent Interferers. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 1172-1188.	4.7	57
24	Parametric Space-Time Detection and Range Estimation of Point-Like Targets in Partially Homogeneous Environment. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 1228-1242.	4.7	11
25	An Eigenvalue-Based Approach for Structure Classification in Polarimetric SAR Images. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1003-1007.	3.1	4
26	Radar Adaptive Detection Architectures for Heterogeneous Environments. IEEE Transactions on Signal Processing, 2020, 68, 4307-4319.	5.3	32
27	Novel Parameter Estimation and Radar Detection Approaches for Multiple Point-Like Targets: Designs and Comparisons. IEEE Signal Processing Letters, 2020, 27, 1789-1793.	3.6	16
28	Monitoring of Critical Infrastructures by Micromotion Estimation: The Mosul Dam Destabilization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6337-6351.	4.9	10
29	Perspectives on the Structural Health Monitoring of Bridges by Synthetic Aperture Radar. Remote Sensing, 2020, 12, 3852.	4.0	25
30	Subspace-Based Target Detection in the Presence of Multiple Alternative Hypotheses. , 2020, , .		2
31	A Sparse Learning Approach to the Detection of Multiple Noise-Like Jammers. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 4367-4383.	4.7	14
32	Persymmetric adaptive detection with improved robustness to steering vector mismatches. Signal Processing, 2020, 176, 107669.	3.7	10
33	Multi-PRF and multi-frame track-before-detect algorithm in multiple PRF radar system. Signal Processing, 2020, 174, 107648.	3.7	21
34	Training Data Assisted Anomaly Detection of Multi-Pixel Targets In Hyperspectral Imagery. IEEE Transactions on Signal Processing, 2020, 68, 3022-3032.	5.3	13
35	Parameter Estimation of Fluctuating Two-Ray Model for Next Generation Mobile Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 8684-8697.	6.3	9
36	Measurements of Surface River Doppler Velocities With Along-Track InSAR Using a Single Antenna. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 987-997.	4.9	10

#	Article	IF	CITATIONS
37	Persymmetric Subspace Detectors With Multiple Observations in Homogeneous Environments. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 3276-3284.	4.7	23
38	A Robust Framework for Covariance Classification in Heterogeneous Polarimetric SAR Images and Its Application to L-Band Data. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 104-119.	6.3	24
39	Radar Detection Architecture Based on Interference Covariance Structure Classification. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 607-618.	4.7	12
40	Classification of Covariance Matrix Eigenvalues in Polarimetric SAR for Environmental Monitoring Applications. IEEE Aerospace and Electronic Systems Magazine, 2019, 34, 28-43.	1.3	17
41	Micro-Motion Estimation of Maritime Targets Using Pixel Tracking in Cosmo-Skymed Synthetic Aperture Radar Data—An Operative Assessment. Remote Sensing, 2019, 11, 1637.	4.0	18
42	An Improved Adaptive Radar Detector based on Two Sets of Training Data. , 2019, , .		2
43	Radar Architectures Against Coherent Interferers. , 2019, , .		1
44	Training Data Classification Algorithms for Radar Applications. IEEE Signal Processing Letters, 2019, 26, 1446-1450.	3.6	11
45	Interference Covariance Matrix Structure Classification in Heterogeneous Environment. IEEE Signal Processing Letters, 2019, 26, 1491-1495.	3.6	6
46	Adaptive Radar Detection of Dim Moving Targets in Presence of Range Migration. IEEE Signal Processing Letters, 2019, 26, 1461-1465.	3.6	17
47	Robust GLRT Detection Exploiting Persymmetry in Partially Homogeneous Environments. , 2019, , .		1
48	A Sparse Learning Approach to Multiple Noise-like Jammers Detection. , 2019, , .		0
49	Adaptive Detection of Coherent Radar Targets in the Presence of Noise Jamming. IEEE Transactions on Signal Processing, 2019, 67, 6498-6510.	5.3	28
50	SINR Distribution for the Persymmetric SMI Beamformer With Steering Vector Mismatches. IEEE Transactions on Signal Processing, 2019, 67, 1382-1392.	5.3	12
51	Estimation of Rician K-Factor in the Presence of Nakagami- <inline-formula> <tex-math notation="LaTeX">\$m\$ </tex-math </inline-formula> Shadowing for the LoS Component. IEEE Wireless Communications Letters, 2018, 7, 550-553.	5.0	17
52	Adaptive Radar Detection Using Two Sets of Training Data. IEEE Transactions on Signal Processing, 2018, 66, 1791-1801.	5.3	41
53	Detection of Multiple Noise-like Jammers for Radar Applications. , 2018, , .		5
54	Adaptive Radar Detectors Based on the Observed FIM. IEEE Transactions on Signal Processing, 2018, 66, 3838-3847.	5.3	21

#	Article	IF	CITATIONS
55	Adaptive Detection of Point-Like Targets in Partially Homogeneous Clutter With Symmetric Spectrum. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53, 2110-2119.	4.7	50
56	A Novel Noise Jamming Detection Algorithm for Radar Applications. IEEE Signal Processing Letters, 2017, 24, 206-210.	3.6	43
57	Knowledge-aided adaptive detection in partially homogeneous clutter: Joint exploitation of persymmetry and symmetric spectrum. , 2017, 67, 131-138.		28
58	Model Order Selection Rules for Covariance Structure Classification in Radar. IEEE Transactions on Signal Processing, 2017, 65, 5305-5317.	5.3	22
59	On the Statistical Invariance for Adaptive Radar Detection in Partially Homogeneous Disturbance Plus Structured Interference. IEEE Transactions on Signal Processing, 2017, 65, 1222-1234.	5.3	91
60	Adaptive Detection and Range Estimation of Point-Like Targets With Symmetric Spectrum. IEEE Signal Processing Letters, 2017, 24, 1744-1748.	3.6	15
61	Polarimetric detection and range estimation of a point-like target. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52, 603-616.	4.7	25
62	Adaptive radar detection in the presence of Gaussian clutter with symmetric spectrum. , 2016, , .		3
63	Coincidence of Maximal Invariants for Two Adaptive Radar Detection Problems. IEEE Signal Processing Letters, 2016, , 1-1.	3.6	5
64	Invariance Theory for Adaptive Detection in Interference With Group Symmetric Covariance Matrix. IEEE Transactions on Signal Processing, 2016, 64, 6299-6312.	5.3	25
65	Knowledge-Based Adaptive Detection: Joint Exploitation of Clutter and System Symmetry Properties. IEEE Signal Processing Letters, 2016, 23, 1489-1493.	3.6	56
66	On the Maximal Invariant Statistic for Adaptive Radar Detection in Partially Homogeneous Disturbance With Persymmetric Covariance. IEEE Signal Processing Letters, 2016, 23, 1830-1834.	3.6	43
67	Feature article: A survey on two-stage decision schemes for point-like targets in Gaussian interference. IEEE Aerospace and Electronic Systems Magazine, 2016, 31, 20-29.	1.3	17
68	Symmetric spectrum detection in the presence of partially homogeneous environment. , 2016, , .		5
69	A Unifying Framework for Adaptive Radar Detection in Homogeneous Plus Structured Interference— Part II: Detectors Design. IEEE Transactions on Signal Processing, 2016, 64, 2907-2919.	5.3	127
70	Adaptive Detection of Point-Like Targets in Spectrally Symmetric Interference. IEEE Transactions on Signal Processing, 2016, 64, 3207-3220.	5.3	92
71	Adaptive Radar Detection of a Subspace Signal Embedded in Subspace Structured Plus Gaussian Interference Via Invariance. IEEE Transactions on Signal Processing, 2016, 64, 2156-2167.	5.3	67
72	A Unifying Framework for Adaptive Radar Detection in Homogeneous Plus Structured Interference— Part I: On the Maximal Invariant Statistic. IEEE Transactions on Signal Processing, 2016, 64, 2894-2906.	5.3	90

#	Article	IF	CITATIONS
73	Performance analysis of an enhanced two-stage detector. , 2015, , .		2
74	Design and Analysis of Invariant Receivers for Gaussian Targets. IEEE Journal on Selected Topics in Signal Processing, 2015, 9, 1560-1569.	10.8	4
75	Diffuse Multipath Exploitation for Adaptive Radar Detection. IEEE Transactions on Signal Processing, 2015, 63, 1268-1281.	5.3	67
76	An Invariant Approach to Adaptive Radar Detection Under Covariance Persymmetry. IEEE Transactions on Signal Processing, 2015, 63, 1297-1309.	5.3	62
77	Adaptive Radar Detection and Range Estimation with Oversampled Data for Partially Homogeneous Environment. IEEE Signal Processing Letters, 2015, 22, 1359-1363.	3.6	22
78	Radar detection and range estimation using oversampled data. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 1039-1052.	4.7	28
79	Parametric space–time detection and range estimation of a small target. IET Radar, Sonar and Navigation, 2015, 9, 221-231.	1.8	9
80	An invariant approach to adaptive radar detection under covariance persymmetry. , 2015, , .		0
81	Persymmetric detectors with enhanced rejection capabilities. IET Radar, Sonar and Navigation, 2014, 8, 557-563.	1.8	28
82	A radar detector with enhanced range estimation capabilities for partially homogeneous environment. IET Radar, Sonar and Navigation, 2014, 8, 1018-1025.	1.8	15
83	Adaptive Detection of Point-Like Targets in the Presence of Homogeneous Clutter and Subspace Interference. IEEE Signal Processing Letters, 2014, 21, 848-852.	3.6	58
84	Persymmetric adaptive detection of distributed targets in partially-homogeneous environment. , 2014, 24, 42-51.		72
85	An Adaptive Detector with Range Estimation Capabilities for Partially Homogeneous Environment. IEEE Signal Processing Letters, 2014, 21, 325-329.	3.6	19
86	Enhanced radar detection and range estimation via oversampled data. , 2014, , .		0
87	Adaptive radar detection in diffuse multipath environments. , 2014, , .		2
88	Passive location developments in Elettronica SpA: System applications. , 2014, , .		2
89	A persymmetric detector with enhanced selectivity properties. , 2013, , .		0
90	Rao and Wald Tests for Nonhomogeneous Scenarios. Sensors, 2012, 12, 4730-4736.	3.8	10

1

#	Article	IF	CITATIONS
91	A Tracking System Exploiting Interaction Between a Detector With Localization Capabilities and the KF. IEEE Transactions on Signal Processing, 2012, 60, 6031-6036.	5.3	10
92	Batch tracking algorithm for multistatic sonars. IET Radar, Sonar and Navigation, 2012, 6, 746-752.	1.8	44
93	Adaptive detection of distributed targets with orthogonal rejection. IET Radar, Sonar and Navigation, 2012, 6, 483-493.	1.8	38
94	A ML localizer of multiple radar targets. , 2012, , .		0
95	Persymmetric Rao and Wald Tests for Partially Homogeneous Environment. IEEE Signal Processing Letters, 2012, 19, 587-590.	3.6	85
96	ADAPTIVE DETECTION OF MULTIPLE POINT-LIKE TARGETS UNDER CONIC CONSTRAINTS. Progress in Electromagnetics Research, 2012, 129, 231-250.	4.4	13
97	A Kalman-based tracker exploiting spillover of target energy at the detection stage. , 2012, , .		Ο
98	Adaptive radar detection and localization of a point-like target in homogeneous environment. , 2011, , .		0
99	Adaptive Radar Detection and Localization of a Point-Like Target. IEEE Transactions on Signal Processing, 2011, 59, 4086-4096.	5.3	62
100	Advances in Multistatic Sonar. , 2011, , .		5
101	Track-Before-Detect Algorithms for Targets with Kinematic Constraints. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47, 1837-1849.	4.7	94
102	A maximum likelihood tracker for multistatic sonars. , 2010, , .		8
103	Track-before-detect algorithms for bistatic sonars. , 2010, , .		21
104	Adaptive strategies for discrimination between mainlobe and sidelobe signals. , 2010, , .		2
105	Track-Before-Detect Strategies for STAP Radars. IEEE Transactions on Signal Processing, 2010, 58, 933-938.	5.3	115
106	A Rao Test With Enhanced Selectivity Properties in Homogeneous Scenarios. IEEE Transactions on Signal Processing, 2010, 58, 5385-5390.	5.3	64
107	Detection Algorithms to Discriminate Between Radar Targets and ECM Signals. IEEE Transactions on Signal Processing, 2010, 58, 5984-5993.	5.3	81

108 Adaptive radar detection: A subspace identification approach. , 2010, , .

#	Article	IF	CITATIONS
109	One- and Two-Stage Tunable Receivers. IEEE Transactions on Signal Processing, 2009, 57, 2064-2073.	5.3	6
110	CFAR Detection Strategies for Distributed Targets Under Conic Constraints. IEEE Transactions on Signal Processing, 2009, 57, 3305-3316.	5.3	39
111	One- and Two-Stage Tunable Receivers*. IEEE Transactions on Signal Processing, 2009, 57, 3264-3273.	5.3	28
112	Advanced Radar Detection Schemes Under Mismatched Signal Models. Synthesis Lectures on Signal Processing, 2009, 4, 1-105.	0.5	91
113	Theoretical Performance Analysis of the W-ABORT Detector. IEEE Transactions on Signal Processing, 2008, 56, 2117-2121.	5.3	12
114	An Improved Adaptive Sidelobe Blanker. IEEE Transactions on Signal Processing, 2008, 56, 4152-4161.	5.3	28
115	A Subspace-Based Adaptive Sidelobe Blanker. IEEE Transactions on Signal Processing, 2008, 56, 4141-4151.	5.3	43
116	Adaptive radar detection of distributed targets under conic constraints. , 2008, , .		5
117	A parametric adaptive radar detector. , 2008, , .		4
118	A Two-Stage Detector with Improved Acceptance/Rejection Capabilities. , 2008, , .		2
119	GLRT-Based Direction Detectors in Homogeneous Noise and Subspace Interference. IEEE Transactions on Signal Processing, 2007, 55, 2386-2394.	5.3	87
120	Derivation and Analysis of an Adaptive Detector With Enhanced Mismatched Signals Rejection Capabilities. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2007, , .	0.0	4
121	Adaptive Detection in Nonhomogeneous Environments Using the Generalized Eigenrelation. IEEE Signal Processing Letters, 2007, 14, 731-734.	3.6	27
122	On the CFAR Property of GLRT-Based Direction Detectors. IEEE Transactions on Signal Processing, 2007, 55, 4312-4315.	5.3	9
123	CFAR detection of extended and multiple point-like targets without assignment of secondary data. IEEE Signal Processing Letters, 2006, 13, 240-243.	3.6	49
124	GLRT-Based Direction Detectors in Noise and Subspace Interference. , 0, , .		1