
Anna Maria Cariboni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1739665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p140Cap Controls Female Fertility in Mice Acting via Glutamatergic Afference on Hypothalamic Gonadotropin-Releasing Hormone Neurons. Frontiers in Neuroscience, 2022, 16, 744693.	2.8	Ο
2	A Novel Loss-of-Function SEMA3E Mutation in a Patient with Severe Intellectual Disability and Cognitive Regression. International Journal of Molecular Sciences, 2022, 23, 5632.	4.1	1
3	A Novel SEMA3G Mutation in Two Siblings Affected by Syndromic GnRH Deficiency. Neuroendocrinology, 2021, 111, 421-441.	2.5	18
4	Kallmann syndrome and idiopathic hypogonadotropic hypogonadism: The role of semaphorin signaling on GnRH neurons. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 182, 307-315.	1.8	5
5	Anti-Müllerian Hormone, Growth Hormone, and Insulin-Like Growth Factor 1 Modulate the Migratory and Secretory Patterns of GnRH Neurons. International Journal of Molecular Sciences, 2021, 22, 2445.	4.1	16
6	Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 638674.	3.7	5
7	The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. International Journal of Molecular Sciences, 2021, 22, 9425.	4.1	18
8	A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. Journal of Clinical Investigation, 2021, 131, .	8.2	16
9	LGR4 deficiency results in delayed puberty through impaired Wnt/β-catenin signaling. JCI Insight, 2020, 5,	5.0	25
10	PLXNA1 and PLXNA3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons. Development (Cambridge), 2019, 146, .	2.5	19
11	High-Density Lipoprotein Function Is Reduced in Patients Affected by Genetic or Idiopathic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3097-3107.	3.6	21
12	Protein Kinase CK2 Subunits Differentially Perturb the Adhesion and Migration of GN11 Cells: A Model of Immature Migrating Neurons. International Journal of Molecular Sciences, 2019, 20, 5951.	4.1	26
13	Semaphorin Signaling in GnRH Neurons: From Development to Disease. Neuroendocrinology, 2019, 109, 193-199.	2.5	32
14	HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast With Other GnRH Deficiency Genes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3420-3429.	3.6	38
15	Control of GnRH Secretion. Endocrinology, 2017, , 3-33.	0.1	1
16	Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms. Molecular and Cellular Endocrinology, 2017, 454, 135-145.	3.2	16
17	In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex. Brain Sciences, 2017, 7, 48.	2.3	20
18	<i> <scp>IGSF</scp> 10 </i> mutations dysregulate gonadotropinâ€releasing hormone neuronal migration resulting in delayed puberty. EMBO Molecular Medicine, 2016, 8, 626-642.	6.9	109

#	Article	IF	CITATIONS
19	Role of IGSF10 mutations in self-limited delayed puberty. Lancet, The, 2016, 387, S14.	13.7	Ο
20	Lentiviral expression of GAD67 and CCK promoter-driven opsins to target interneuronsin vitroandin vivo. Journal of Gene Medicine, 2016, 18, 27-37.	2.8	1
21	GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Human Reproduction Update, 2016, 22, 358-381.	10.8	156
22	Control of GnRH Secretion. Endocrinology, 2016, , 1-31.	0.1	0
23	The zebrafish: an emerging animal model for investigating the hypothalamic regulation of reproduction. Minerva Endocrinologica, 2016, 41, 250-65.	1.8	9
24	The role of semaphorin signaling in the etiology of hypogonadotropic hypogonadism. Minerva Endocrinologica, 2016, 41, 266-78.	1.8	9
25	The molecular control of GnRH neuron development. SpringerPlus, 2015, 4, L46.	1.2	3
26	Impaired sense of smell and altered olfactory system in RAG-1â^'â^aî immunodeficient mice. Frontiers in Neuroscience, 2015, 9, 318.	2.8	26
27	VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development (Cambridge), 2015, 142, 314-9.	2.5	29
28	Cdk5 Phosphorylation of ErbB4 is Required for Tangential Migration of Cortical Interneurons. Cerebral Cortex, 2015, 25, 991-1003.	2.9	30
29	Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. Journal of Clinical Investigation, 2015, 125, 2413-2428.	8.2	97
30	Establishment of a radial glia-like mouse fetal hypothalamic neural stem cell line (AC1) able to differentiate into neuroendocrine cells. Neurogenesis (Austin, Tex), 2014, 1, e29950.	1.5	5
31	Neuritin 1 promotes neuronal migration. Brain Structure and Function, 2014, 219, 105-118.	2.3	34
32	Kallmann's syndrome and normosmic isolated hypogonadotropic hypogonadism: two largely overlapping manifestations of one rare disorder. Journal of Endocrinological Investigation, 2014, 37, 499-500.	3.3	8
33	CXC Chemokine Receptor 7 (CXCR7) Affects the Migration of GnRH Neurons by Regulating CXCL12 Availability. Journal of Neuroscience, 2013, 33, 17527-17537.	3.6	31
34	Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development (Cambridge), 2012, 139, 3326-3331.	2.5	27
35	Early B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal–Retzius cells from the cortical hem. Developmental Biology, 2012, 365, 277-289.	2.0	41
36	SOX2 regulates the hypothalamic-pituitary axis at multiple levels. Journal of Clinical Investigation, 2012, 122, 3635-3646.	8.2	84

Anna Maria Cariboni

#	Article	IF	CITATIONS
37	The Hormone of Love Attracts a Partner for Life. Developmental Cell, 2011, 21, 602-604.	7.0	1
38	Activation of TRPV4 channels reduces migration of immortalized neuroendocrine cells. Journal of Neurochemistry, 2011, 116, 606-615.	3.9	28
39	VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels. Development (Cambridge), 2011, 138, 3723-3733.	2.5	71
40	Robo1 Regulates Semaphorin Signaling to Guide the Migration of Cortical Interneurons through the Ventral Forebrain. Journal of Neuroscience, 2011, 31, 6174-6187.	3.6	92
41	Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Human Molecular Genetics, 2011, 20, 336-344.	2.9	124
42	Calcineurin Primes Immature Gonadotropin-Releasing Hormone-Secreting Neuroendocrine Cells for Migration. Molecular Endocrinology, 2008, 22, 729-736.	3.7	7
43	Leukemia Inhibitory Factor Induces the Chemomigration of Immortalized Gonadotropin-Releasing Hormone Neurons through the Independent Activation of the Janus Kinase/Signal Transducer and Activator of Transcription 3, Mitogen-Activated Protein Kinase/Extracellularly Regulated Kinase 1/2, and Phosphatidylinositol 3-Kinase/Akt Signaling Pathways. Molecular Endocrinology. 2007. 21. 1163-1174.	3.7	37
44	Clusterin Isoforms Differentially Affect Growth and Motility of Prostate Cells: Possible Implications in Prostate Tumorigenesis. Cancer Research, 2007, 67, 10325-10333.	0.9	53
45	From nose to fertility: the long migratory journey of gonadotropin-releasing hormone neurons. Trends in Neurosciences, 2007, 30, 638-644.	8.6	87
46	Neuropilins and Their Ligands Are Important in the Migration of Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2007, 27, 2387-2395.	3.6	78
47	Kallmann's syndrome, a neuronal migration defect. Cellular and Molecular Life Sciences, 2006, 63, 2512-2526.	5.4	62
48	Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons. Development (Cambridge), 2005, 132, 4709-4718.	2.5	67
49	Expression and Differential Effects of the Activation of Glucocorticoid Receptors in Mouse Gonadotropin-Releasing Hormone Neurons. Neuroendocrinology, 2005, 82, 151-163.	2.5	18
50	The product of X-linked Kallmann's syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Human Molecular Genetics, 2004, 13, 2781-2791.	2.9	121
51	Cell of the month: Microtubules in mouse neurons. Nature Cell Biology, 2004, 6, 929-929.	10.3	0
52	Depolarization differentially affects the secretory and migratory properties of two cell lines of immortalized luteinizing hormoneâ€releasing hormone (LHRH) neurons. European Journal of Neuroscience, 2003, 18, 1410-1418.	2.6	34
53	Hepatocyte Growth Factor/Scatter Factor Facilitates Migration of GN-11 Immortalized LHRH Neurons. Endocrinology, 2002, 143, 3306-3315.	2.8	50
53	Hepatocyte Growth Factor/Scatter Factor Facilitates Migration of GN-11 Immortalized LHRH Neurons. Endocrinology, 2002, 143, 3306-3315.	2.8	50