
Ali Zarnegaryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1739292/publications.pdf Version: 2024-02-01

ALL ZADNECADVAN

#	Article	IF	CITATIONS
1	TiO2-coated graphene oxide-molybdate complex as a new separable nanocatalyst for the synthesis of pyrrole derivatives by Paal-Knorr reaction. Arabian Journal of Chemistry, 2022, 15, 103736.	4.9	4
2	lonic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surfaces and Interfaces, 2021, 23, 100946.	3.0	17
3	Graphene oxide nanosheet supported molybdenum complex: An efficient and recoverable catalyst for epoxidation of alkenes. Applied Surface Science Advances, 2021, 4, 100073.	6.8	3
4	Coreâ€shell structured magnetite silicaâ€supported hexatungstate: A novel and powerful nanocatalyst for the synthesis of biologically active pyrazole derivatives. Applied Organometallic Chemistry, 2021, 35, e6409.	3.5	4
5	Immobilization of hexamolybdate onto carbon-coated Fe3O4 nanoparticle: A novel catalyst with high activity for oxidation ofÂalcohols. Journal of Organometallic Chemistry, 2021, 953, 122043.	1.8	9
6	Immobilization of Polyoxometalate onto Modified Magnetic Nanoparticles: A New Catalyst for the Synthesis of Dihydropyranopyrazole Derivatives. ChemistrySelect, 2021, 6, 11039-11046.	1.5	3
7	Core–shell structured Fe3O4@SiO2-supported IL/[Mo6O19]: A novel and magnetically recoverable nanocatalyst for the preparation of biologically active dihydropyrimidinones. Journal of Physics and Chemistry of Solids, 2020, 146, 109601.	4.0	40
8	An efficient and heterogeneous Pd-containing modified graphene oxide catalyst for preparation of biaryl compounds. Heliyon, 2020, 6, e03741.	3.2	9
9	Core–shell structured magnetic silica supported propylamine/molybdate complexes: an efficient and magnetically recoverable nanocatalyst. New Journal of Chemistry, 2019, 43, 12283-12291.	2.8	24
10	Graphene oxide supported Schiff-base/palladium complex: An efficient and recoverable catalyst for Suzuki–Miyaura coupling reaction. Polyhedron, 2019, 170, 530-536.	2.2	24
11	Copper(II) Schiff base complex immobilized on graphene nanosheets: a heterogeneous catalyst for epoxidation of olefins. Journal of the Iranian Chemical Society, 2019, 16, 747-756.	2.2	16
12	Synthesis and characterization of a novel polyoxometalate–Cu(II) hybrid catalyst for efficient synthesis of triazols. Polyhedron, 2016, 115, 61-66.	2.2	13
13	A graphene oxide immobilized Cu(<scp>ii</scp>) complex of 1,2-bis(4-aminophenylthio)ethane: an efficient catalyst for epoxidation of olefins with tert-butyl hydroperoxide. New Journal of Chemistry, 2016, 40, 2280-2286.	2.8	38