Hongqi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1738987/publications.pdf

Version: 2024-02-01

		1307594	1720034	
8	199	7	7	
papers	citations	h-index	g-index	
0			104	
8	8	8	194	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATIONS
1	<i>TaCER1â€1A</i> is involved in cuticular wax alkane biosynthesis in hexaploid wheat and responds to plant abiotic stresses. Plant, Cell and Environment, 2019, 42, 3077-3091.	5.7	51
2	Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum. Scientific Reports, 2016, 6, 25008.	3.3	49
3	Five Fatty Acyl-Coenzyme A Reductases Are Involved in the Biosynthesis of Primary Alcohols in Aegilops tauschii Leaves. Frontiers in Plant Science, 2017, 8, 1012.	3.6	28
4	Tomato SICER1â \in "1 catalyzes the synthesis of wax alkanes, increasing drought tolerance and fruit storability. Horticulture Research, 2022, 9, .	6. 3	20
5	Regulation of cuticular wax biosynthesis in plants under abiotic stress. Plant Biotechnology Reports, 2021, 15, 1-12.	1.5	19
6	Expression Analysis and Functional Characterization of CER1 Family Genes Involved in Very-Long-Chain Alkanes Biosynthesis in Brachypodium distachyon. Frontiers in Plant Science, 2019, 10, 1389.	3.6	17
7	Characterization of an alkylresorcinol synthase that forms phenolics accumulating in the cuticular wax on various organs of rye (<i>Secale cereale</i>). Plant Journal, 2020, 102, 1294-1312.	5.7	15
8	Induction of pollen embryo and chromosome doubling in tobacco (Nicotianatabacum L.). Turkish Journal of Botany, 2020, 44, 76-84.	1.2	0