Jeffrey H Kordower

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1738964/jeffrey-h-kordower-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,696 80 158 229 h-index g-index citations papers 28,660 6.8 7.6 244 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
229	Optimizing maturity and dose of iPSC-derived dopamine progenitor cell therapy for Parkinson's disease <i>Npj Regenerative Medicine</i> , 2022 , 7, 24	15.8	3
228	The Unbearable Lightness of Brundin. <i>Journal of Parkinson</i> Disease, 2022 , 12, 1069-1072	5.3	
227	A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. <i>Journal of Neural Transmission</i> , 2021 , 128, 1507-1527	4.3	1
226	A novel tau-based rhesus monkey model of Alzheimer's pathogenesis. <i>Alzheimermand Dementia</i> , 2021 , 17, 933-945	1.2	14
225	Reply to: "Cell Therapy for Huntington's Disease: Learning from Failure". <i>Movement Disorders</i> , 2021 , 36, 788-789	7	1
224	Enhanced CNS transduction from AAV.PHP.eB infusion into the cisterna magna of older adult rats compared to AAV9. <i>Gene Therapy</i> , 2021 ,	4	8
223	GDNF signaling in subjects with minimal motor deficits and Parkinson's disease. <i>Neurobiology of Disease</i> , 2021 , 153, 105298	7.5	7
222	SeqStain is an efficient method for multiplexed, spatialomic profiling of human and murine tissues. <i>Cell Reports Methods</i> , 2021 , 1,		3
221	Inflammation in Experimental Models of Esynucleinopathies. <i>Movement Disorders</i> , 2021 , 36, 37-49	7	14
220	Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. <i>Neurobiology of Disease</i> , 2021 , 148, 105184	7.5	5
219	Mitomycin-C treatment during differentiation of induced pluripotent stem cell-derived dopamine neurons reduces proliferation without compromising survival or function in vivo. <i>Stem Cells Translational Medicine</i> , 2021 , 10, 278-290	6.9	7
218	Long-term, stable, targeted biodelivery and efficacy of GDNF from encapsulated cells in the rat and Goettingen miniature pig brain <i>Current Research in Pharmacology and Drug Discovery</i> , 2020 , 1, 19-29	3	4
217	GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. <i>Journal of Parkinson</i> Disease, 2020 , 10, 875-891	5.3	28
216	Stem Cells: Scientific and Ethical Quandaries of a Personalized Approach to Parkinson's Disease. <i>Movement Disorders</i> , 2020 , 35, 1312-1314	7	12
215	Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson's disease. <i>Brain</i> , 2020 , 143, 960-975	11.2	37
214	Does Developmental Variability in the Number of Midbrain Dopamine Neurons Affect Individual Risk for Sporadic Parkinson's Disease?. <i>Journal of Parkinson</i> Disease, 2020 , 10, 405-411	5.3	10
213	T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. <i>Acta Neuropathologica</i> , 2020 , 139, 855-874	14.3	38

(2018-2020)

212	Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease. <i>Journal of Neuroscience</i> , 2020 , 40, 3675-3691	6.6	9
211	Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson's disease models. <i>Journal of Clinical Investigation</i> , 2020 , 130, 904-920	15.9	55
210	Reply to: "Toward a Personalized Approach to Parkinson's Cell Therapy". <i>Movement Disorders</i> , 2020 , 35, 2120-2121	7	
209	Anti-Esynuclein ASO delivered to monoamine neurons prevents Esynuclein accumulation in a Parkinson's disease-like mouse model and in monkeys. <i>EBioMedicine</i> , 2020 , 59, 102944	8.8	18
208	Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. <i>Neurobiology of Disease</i> , 2020 , 135, 104352	7.5	86
207	Immunotherapy in Parkinson's disease: Current status and future directions. <i>Neurobiology of Disease</i> , 2019 , 132, 104587	7.5	21
206	Spreading of alpha-synuclein - relevant or epiphenomenon?. <i>Journal of Neurochemistry</i> , 2019 , 150, 605-6	561	17
205	Temporal evolution of microglia and Esynuclein accumulation following foetal grafting in Parkinson's disease. <i>Brain</i> , 2019 , 142, 1690-1700	11.2	51
204	Low-Dose Maraviroc, an Antiretroviral Drug, Attenuates the Infiltration of T Cells into the Central Nervous System and Protects the Nigrostriatum in Hemiparkinsonian Monkeys. <i>Journal of Immunology</i> , 2019 ,	5.3	13
203	Parkinson's disease gene therapy: Will focused ultrasound and nanovectors be the next frontier?. <i>Movement Disorders</i> , 2019 , 34, 1279-1282	7	10
202	Widespread Striatal Delivery of GDNF from Encapsulated Cells Prevents the Anatomical and Functional Consequences of Excitotoxicity. <i>Neural Plasticity</i> , 2019 , 2019, 6286197	3.3	9
201	Loss of One Engrailed1 Allele Enhances Induced Esynucleinopathy. <i>Journal of Parkinson</i> Disease, 2019 , 9, 315-326	5.3	6
200	Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes. <i>Brain</i> , 2019 , 142, 3565-3579	11.2	50
199	Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let's talk about the lipids in the room. <i>Npj Parkinsonm Disease</i> , 2019 , 5, 23	9.7	23
198	Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice. <i>Gut</i> , 2019 , 68, 829-843	19.2	156
197	Disease Modification for Parkinson's Disease: Axonal Regeneration and Trophic Factors. <i>Movement Disorders</i> , 2018 , 33, 678-683	7	17
196	Probing the striatal dopamine system for a putative neuroprotective effect of deep brain stimulation in Parkinson's disease. <i>Movement Disorders</i> , 2018 , 33, 652-654	7	4
195	Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. <i>Neurobiology of Disease</i> , 2018, 112, 106-118	7.5	86

194	Do subjects with minimal motor features have prodromal Parkinson disease?. <i>Annals of Neurology</i> , 2018 , 83, 562-574	9.4	25
193	Detecting Alpha Synuclein Seeding Activity in Formaldehyde-Fixed MSA Patient Tissue by PMCA. <i>Molecular Neurobiology</i> , 2018 , 55, 8728-8737	6.2	25
192	Esynuclein nonhuman primate models of Parkinson's disease. <i>Journal of Neural Transmission</i> , 2018 , 125, 385-400	4.3	18
191	Analysis of age-related changes in psychosine metabolism in the human brain. <i>PLoS ONE</i> , 2018 , 13, e01	93 <u>4</u> 38	15
190	Proteasome-targeted nanobodies alleviate pathology and functional decline in an Bynuclein-based Parkinson's disease model. <i>Npj Parkinson Disease</i> , 2018 , 4, 25	9.7	38
189	Disease Modification Through Trophic Factor Delivery. <i>Methods in Molecular Biology</i> , 2018 , 1780, 525-5.	47 .4	6
188	Targeting Esynuclein as a therapy for Parkinson's disease: The battle begins. <i>Movement Disorders</i> , 2017 , 32, 203-207	7	17
187	The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. <i>Journal of Parkinsoni</i> Disease, 2017 , 7, 331-346	5.3	46
186	Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. <i>Annals of Neurology</i> , 2017 , 81, 46-57	9.4	54
185	Aging and Parkinson's disease: Different sides of the same coin?. <i>Movement Disorders</i> , 2017 , 32, 983-99	0 7	111
184	Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. <i>Acta Neuropathologica</i> , 2017 , 134, 629-653	14.3	131
183	Cryopreservation Maintains Functionality of Human iPSC Dopamine Neurons and Rescues Parkinsonian Phenotypes In Vivo. Stem Cell Reports, 2017, 9, 149-161	8	43
182	Therapeutic approaches to target alpha-synuclein pathology. Experimental Neurology, 2017, 298, 225-2	3 5 .7	133
181	Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. <i>Brain</i> , 2017 , 140, 2982-2992	11.2	34
180	THE CRITICAL ROLE OF NONHUMAN PRIMATES IN MEDICAL RESEARCH. <i>Pathogens and Immunity</i> , 2017 , 2, 352-365	4.9	46
179	Cell Replacement Strategies for Parkinson Disease. <i>Molecular and Translational Medicine</i> , 2017 , 73-83	0.4	
178	Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: studies in rodents and nonhuman primates. <i>Acta Neuropathologica Communications</i> , 2017 , 5, 47	7.3	28
	Parkinsonian monkeys with prior levodopa-induced dyskinesias followed by fetal dopamine		

176	Mechanisms for cell-to-cell propagation no longer lag behind. <i>Movement Disorders</i> , 2016 , 31, 1798-1799	97	2
175	TDP-43 Proteinopathy: Aggregation and Propagation in the Pathogenesis of Amyotrophic Lateral Sclerosis. <i>Movement Disorders</i> , 2016 , 31, 1139	7	3
174	AAV2-Neurturin for Parkinson's Disease: What Lessons Have We Learned?. <i>Methods in Molecular Biology</i> , 2016 , 1382, 485-90	1.4	14
173	Alterations in Activity-Dependent Neuroprotective Protein in Sporadic and Experimental Parkinson's Disease. <i>Journal of Parkinson</i> Disease, 2016 , 6, 77-97	5.3	6
172	Preface. Movement Disorders, 2016, 31, 151	7	
171	Alpha-synuclein propagation: New insights from animal models. <i>Movement Disorders</i> , 2016 , 31, 161-8	7	79
170	Is Axonal Degeneration a Key Early Event in Parkinson's Disease?. <i>Journal of Parkinson</i> Disease, 2016 , 6, 703-707	5.3	30
169	Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease. <i>Science Translational Medicine</i> , 2016 , 8, 368ra174	17.5	99
168	How strong is the evidence that Parkinson's disease is a prion disorder?. <i>Current Opinion in Neurology</i> , 2016 , 29, 459-66	7.1	48
167	Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease. <i>Journal of Biological Chemistry</i> , 2016 , 291, 15267-81	5.4	48
166	The prion hypothesis of Parkinson's disease. <i>Current Neurology and Neuroscience Reports</i> , 2015 , 15, 28	6.6	50
165	The native form of Esynuclein: Monomer, tetramer, or a combination in equilibrium. <i>Movement Disorders</i> , 2015 , 30, 1870	7	4
164	Trophic factors for Parkinson's disease: To live or let die. <i>Movement Disorders</i> , 2015 , 30, 1715-24	7	47
163	Parkinson's disease and prion disease: Straining the comparison. <i>Movement Disorders</i> , 2015 , 30, 1727	7	3
162	Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: A double-blind, randomized, controlled trial. <i>Annals of Neurology</i> , 2015 , 78, 248-57	9.4	190
161	PGC-1 Promoter Methylation in Parkinson's Disease. <i>PLoS ONE</i> , 2015 , 10, e0134087	3.7	74
160	Analysis of YFP(J16)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington's disease. <i>Human Molecular Genetics</i> , 2015 , 24, 5285-98	5.6	38
159	Gene therapy for Parkinson's disease: still a hot topic?. <i>Neuropsychopharmacology</i> , 2015 , 40, 255-6	8.7	6

158	Misfolded proteins in Huntington disease fetal grafts: further evidence of cell-to-cell transfer?. <i>Annals of Neurology</i> , 2014 , 76, 20-1	9.4	2
157	Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson's disease. <i>Movement Disorders</i> , 2014 , 29, 999-1009	7	144
156	Neonatal immune-tolerance in mice does not prevent xenograft rejection. <i>Experimental Neurology</i> , 2014 , 254, 90-8	5.7	21
155	The prion hypothesis of Parkinson's disease: this hot topic just got hotter. <i>Movement Disorders</i> , 2014 , 29, 988	7	3
154	Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson's disease. <i>Neurobiology of Disease</i> , 2014 , 69, 1-14	7.5	47
153	A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer's disease. <i>Alzheimer</i> and <i>Dementia</i> , 2014 , 10, 571-81	1.2	136
152	Trophic factor gene therapy for Parkinson's disease. <i>Movement Disorders</i> , 2013 , 28, 96-109	7	99
151	Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. <i>Brain</i> , 2013 , 136, 2419-31	11.2	682
150	Can intrabodies serve as neuroprotective therapies for Parkinson's disease? Beginning thoughts. Journal of Parkinson Disease, 2013 , 3, 581-91	5.3	15
149	Cell therapy for Parkinson's disease: what next?. <i>Movement Disorders</i> , 2013 , 28, 110-5	_	47
149	cell therapy for Farkinson's disease. What hext Movement bisorders, 2013, 20, 110 3	7	47
149	In memorium: Roy A.E. Bakay, MD. <i>Movement Disorders</i> , 2013 , 28, 1809-10	7	3
148	In memorium: Roy A.E. Bakay, MD. <i>Movement Disorders</i> , 2013 , 28, 1809-10 Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. <i>Movement Disorders</i> ,	7	3
148	In memorium: Roy A.E. Bakay, MD. <i>Movement Disorders</i> , 2013 , 28, 1809-10 Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. <i>Movement Disorders</i> , 2012 , 27, 709-15 Neuropathology in transplants in Parkinson's disease: implications for disease pathogenesis and	7	3 292
148 147 146	In memorium: Roy A.E. Bakay, MD. <i>Movement Disorders</i> , 2013 , 28, 1809-10 Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. <i>Movement Disorders</i> , 2012 , 27, 709-15 Neuropathology in transplants in Parkinson's disease: implications for disease pathogenesis and the future of cell therapy. <i>Progress in Brain Research</i> , 2012 , 200, 221-41	7 7 2.9	3 292 39
148 147 146	In memorium: Roy A.E. Bakay, MD. <i>Movement Disorders</i> , 2013 , 28, 1809-10 Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. <i>Movement Disorders</i> , 2012 , 27, 709-15 Neuropathology in transplants in Parkinson's disease: implications for disease pathogenesis and the future of cell therapy. <i>Progress in Brain Research</i> , 2012 , 200, 221-41 Gene therapy for Huntington's disease. <i>Neurobiology of Disease</i> , 2012 , 48, 243-54 Is alpha-synuclein in the colon a biomarker for premotor Parkinson's disease? Evidence from 3	7 7 2.9 7.5	3 292 39 51
148 147 146 145	In memorium: Roy A.E. Bakay, MD. <i>Movement Disorders</i> , 2013 , 28, 1809-10 Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. <i>Movement Disorders</i> , 2012 , 27, 709-15 Neuropathology in transplants in Parkinson's disease: implications for disease pathogenesis and the future of cell therapy. <i>Progress in Brain Research</i> , 2012 , 200, 221-41 Gene therapy for Huntington's disease. <i>Neurobiology of Disease</i> , 2012 , 48, 243-54 Is alpha-synuclein in the colon a biomarker for premotor Parkinson's disease? Evidence from 3 cases. <i>Movement Disorders</i> , 2012 , 27, 716-9 Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease.	7 7 2.9 7.5	3 292 39 51 295

(2010-2011)

140	Transfer of host-derived Bynuclein to grafted dopaminergic neurons in rat. <i>Neurobiology of Disease</i> , 2011 , 43, 552-7	7.5	140
139	Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson's disease. <i>Neurobiology of Disease</i> , 2011 , 44, 38-52	7.5	53
138	Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. <i>Nature</i> , 2011 , 480, 547-51	50.4	1294
137	Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases. <i>Drug Delivery and Translational Research</i> , 2011 , 1, 361-82	6.2	23
136	Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains. <i>Movement Disorders</i> , 2011 , 26, 27-36	7	128
135	Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. <i>PLoS ONE</i> , 2011 , 6, e28032	3.7	483
134	Differential vulnerability of neurons in Huntington's disease: the role of cell type-specific features. Journal of Neurochemistry, 2010 , 113, 1073-91	6	93
133	Missing pieces in the Parkinson's disease puzzle. <i>Nature Medicine</i> , 2010 , 16, 653-61	50.5	521
132	Reply to: B eing too inclusive about synuclein inclusions (INature Medicine, 2010 , 16, 961-961	50.5	
131	Lewy body pathology in fetal grafts. Annals of the New York Academy of Sciences, 2010, 1184, 55-67	6.5	78
130	Ebecretase-1 elevation in aged monkey and Alzheimer's disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and Eamyloid accumulation. <i>European Journal of Neuroscience</i> , 2010 , 32, 1223-38	3.5	46
129	Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. <i>Molecular Therapy</i> , 2010 , 18, 579-87	11.7	76
128	Neurotrophic factor therapy for Parkinson's disease. <i>Progress in Brain Research</i> , 2010 , 184, 237-64	2.9	118
127	Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys. <i>Neurobiology of Aging</i> , 2010 , 31, 937-52	5.6	41
126	Long-term gonadal hormone treatment and endogenous neurogenesis in the dentate gyrus of the adult female monkey. <i>Experimental Neurology</i> , 2010 , 224, 252-7	5.7	16
125	Injectable hydrogels providing sustained delivery of vascular endothelial growth factor are neuroprotective in a rat model of Huntington's disease. <i>Neurotoxicity Research</i> , 2010 , 17, 66-74	4.3	28
124	Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. <i>Lancet Neurology, The</i> , 2010 , 9, 1164-1172	24.1	498
123	Gene therapy for Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S161-73	7	36

122	Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. <i>Frontiers in Neuroanatomy</i> , 2009 , 3, 17	3.6	68
121	Lewy body pathology in long-term fetal nigral transplants: is Parkinson's disease transmitted from one neural system to another?. <i>Neuropsychopharmacology</i> , 2009 , 34, 254	8.7	34
120	Animal rights terrorists: what every neuroscientist should know. <i>Journal of Neuroscience</i> , 2009 , 29, 114	1 %. 80	3
119	Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington's disease. <i>Neurobiology of Disease</i> , 2009 , 34, 40-50	7.5	46
118	Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. <i>Neurobiology of Disease</i> , 2009 , 35, 385-98	7·5	320
117	Dopaminergic transplantation for Parkinson's disease: current status and future prospects. <i>Annals of Neurology</i> , 2009 , 66, 591-6	9.4	70
116	Special issue on neural repair. <i>Journal of Comparative Neurology</i> , 2009 , 515, spc1-spc1	3.4	
115	Special issue on neural repair. <i>Journal of Comparative Neurology</i> , 2009 , 515, spc1-spc1	3.4	
114	Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson's disease: a double blind video-based analysis. <i>Movement Disorders</i> , 2009 , 24, 336-43	7	68
113	Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. <i>Experimental Neurology</i> , 2009 , 216, 342-56	5.7	87
112	Trophic factors therapy in Parkinson's disease. <i>Progress in Brain Research</i> , 2009 , 175, 201-16	2.9	54
111	Propagation of host disease to grafted neurons: accumulating evidence. <i>Experimental Neurology</i> , 2009 , 220, 224-5	5.7	20
110	Decreased alpha-synuclein expression in the aging mouse substantia nigra. <i>Experimental Neurology</i> , 2009 , 220, 359-65	5.7	33
109	Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson's disease. <i>Neurosurgery</i> , 2009 , 64, 602-12; discussion 612-3	3.2	64
108	Future of cell and gene therapies for Parkinson's disease. <i>Annals of Neurology</i> , 2008 , 64 Suppl 2, S122-3	89.4	24
107	Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. <i>Nature Medicine</i> , 2008 , 14, 504-6	50.5	1209
106	Regulatable promoters and gene therapy for Parkinson's disease: is the only thing to fear, fear itself?. <i>Experimental Neurology</i> , 2008 , 209, 34-40	5.7	23
105	Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. <i>Molecular Therapy</i> , 2008 , 16, 1737-44	11.7	65

104	The use of aged monkeys to study pd: important roles in pathogenesis and experimental therapeutics 2008 , 77-85		1
103	Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. <i>Movement Disorders</i> , 2008 , 23, 2303-6	7	212
102	Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. <i>Glia</i> , 2008 , 56, 1199-214	9	55
101	Exercetase-1 (BACE1) expression in cerebral neocortex shows a modular distribution pattern: Inverse correlation with endogenous neuronal activity. <i>Cell Biology International</i> , 2008 , 32, S10-S11	4.5	
100	GENE AND CELLULAR TRANSPLANTATION THERAPIES FOR HUNTINGTON'S DISEASE 2008 , 267-294		
99	Introduction to the special ASNTR issue. Cell Transplantation, 2008, 17, 361-2	4	
98	Gene therapy approaches for the treatment of Parkinson's disease. <i>Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn</i> , 2007 , 84, 291-304	3	6
97	Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: relevance to selective neuronal vulnerability. <i>Journal of Comparative Neurology</i> , 2007 , 502, 68	3 ³ 7 0 0	61
96	Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. <i>Movement Disorders</i> , 2007 , 22, 1124-32	7	116
95	Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson's disease. <i>Brain Research</i> , 2007 , 1147, 77-88	3.7	54
94	Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease?. <i>Neurobiology of Disease</i> , 2007 , 25, 134-49	7.5	316
93	Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: diminished compensatory mechanisms as a prelude to parkinsonism. <i>Neurobiology of Disease</i> , 2007 , 26, 56-65	7.5	121
92	Neurturin gene therapy improves motor function and prevents death of striatal neurons in a 3-nitropropionic acid rat model of Huntington's disease. <i>Neurobiology of Disease</i> , 2007 , 26, 375-84	7.5	33
91	AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson's disease. <i>Neurobiology of Disease</i> , 2007 , 27, 67-76	7.5	121
90	Animal models of Huntington's disease. ILAR Journal, 2007, 48, 356-73	1.7	151
89	Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 18754-9	11.5	334
88	Huntington's disease: pathological mechanisms and therapeutic strategies. <i>Cell Transplantation</i> , 2007 , 16, 301-12	4	45
87	Issues regarding gene therapy products for Parkinson's disease: the development of CERE-120 (AAV-NTN) as one reference point. <i>Parkinsonism and Related Disorders</i> , 2007 , 13 Suppl 3, S469-77	3.6	23

86	Focal not widespread grafts induce novel dyskinetic behavior in parkinsonian rats. <i>Neurobiology of Disease</i> , 2006 , 21, 165-80	7.5	80
85	Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. <i>Neurobiology of Disease</i> , 2006 , 23, 471-80	7.5	77
84	Nurr1 in Parkinson's disease and related disorders. Journal of Comparative Neurology, 2006, 494, 495-5	143.4	155
83	Substantia nigra tangles are related to gait impairment in older persons. <i>Annals of Neurology</i> , 2006 , 59, 166-73	9.4	142
82	Failure of proteasome inhibitor administration to provide a model of Parkinson's disease in rats and monkeys. <i>Annals of Neurology</i> , 2006 , 60, 264-8	9.4	117
81	Proteasome inhibition and Parkinson's disease modeling. <i>Annals of Neurology</i> , 2006 , 60, 260-4	9.4	124
80	Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. <i>Annals of Neurology</i> , 2006 , 60, 706-15	9.4	213
79	Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 9345-50	11.5	85
78	RET expression does not change with age in the substantia nigra pars compacta of rhesus monkeys. <i>Neurobiology of Aging</i> , 2006 , 27, 857-61	5.6	21
77	Neural repair strategies for Parkinson's disease: insights from primate models. <i>Cell Transplantation</i> , 2006 , 15, 251-65	4	39
76	Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson's disease. <i>Neurology</i> , 2006 , 66, S89-103	6.5	44
75	Striatal trophic factor activity in aging monkeys with unilateral MPTP-induced parkinsonism. <i>Experimental Neurology</i> , 2005 , 191 Suppl 1, S60-7	5.7	66
74	RNA amplification of bromodeoxyuridine labeled newborn neurons in the monkey hippocampus. <i>Journal of Neuroscience Methods</i> , 2005 , 144, 197-201	3	2
73	A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. <i>Nature Medicine</i> , 2005 , 11, 551-5	50.5	823
72	Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. <i>Journal of Neurocytology</i> , 2004 , 33, 517-33		112
71	Effects of estrogen replacement therapy on cholinergic basal forebrain neurons and cortical cholinergic innervation in young and aged ovariectomized rhesus monkeys. <i>Journal of Comparative Neurology</i> , 2004 , 472, 193-207	3.4	31
70	Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. Journal of Comparative Neurology, 2004 , 475, 211-9	3.4	206
69	Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging and anatomical study. <i>Neurological Research</i> , 2003 , 25, 68-78	2.7	60

(2001-2003)

68	Knockout of p75NTR does not alter the viability of striatal neurons following a metabolic or excitotoxic injury. <i>Journal of Molecular Neuroscience</i> , 2003 , 20, 93-102	3.3	2
67	Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) alters exploratory behavior, reduces monoamine metabolism, and increases forebrain tyrosine hydroxylase fiber density of juvenile rats. <i>Neurotoxicology and Teratology</i> , 2003 , 25, 509-17	3.9	47
66	GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. <i>Journal of Comparative Neurology</i> , 2003 , 461, 307-16	3.4	42
65	Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. <i>Journal of Comparative Neurology</i> , 2003 , 465, 540-50	3.4	169
64	In vivo gene delivery of glial cell linederived neurotrophic factor for Parkinson's disease. <i>Annals of Neurology</i> , 2003 , 53 Suppl 3, S120-32; discussion S132-4	9.4	86
63	A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. <i>Annals of Neurology</i> , 2003 , 54, 403-14	9.4	1206
62	The role of alpha-synuclein in Parkinson's disease: insights from animal models. <i>Nature Reviews Neuroscience</i> , 2003 , 4, 727-38	13.5	278
61	Structural and functional neuroprotection in a rat model of Huntington's disease by viral gene transfer of GDNF. <i>Experimental Neurology</i> , 2003 , 181, 213-23	5.7	73
60	Primate models of Parkinson's disease. Experimental Neurology, 2003, 183, 258-62	5.7	23
59	Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. <i>Annals of Neurology</i> , 2002 , 51, 145-55	9.4	553
58	Excitotoxic and metabolic damage to the rodent striatum: role of the P75 neurotrophin receptor and glial progenitors. <i>Journal of Comparative Neurology</i> , 2002 , 444, 291-305	3.4	29
57	Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. <i>Journal of Comparative Neurology</i> , 2002 , 443, 136-53	3.4	182
56	Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. <i>Journal of Comparative Neurology</i> , 2002 , 450, 203-14	3.4	149
55	Etiology of Parkinson's disease: Genetics and environment revisited. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 13972-4	11.5	64
54	Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. <i>Journal of Neuroscience</i> , 2002 , 22, 4942-54	6.6	166
53	Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer's disease. <i>Journal of Comparative Neurology</i> , 2001 , 437, 296-307	3.4	61
52	Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. <i>Annals of Neurology</i> , 2001 , 49, 202-213	9.4	346
51	Viral vector-mediated gene therapy for Parkinson's disease. Clinical Neuroscience Research, 2001, 1, 496	-506	6

50	Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment 2001 , 49, 202		5
49	Neuropathology of fetal nigra transplants for Parkinson's disease. <i>Progress in Brain Research</i> , 2000 , 127, 333-44	2.9	15
48	Age-related decreases in GTP-cyclohydrolase-I immunoreactive neurons in the monkey and human substantia nigra. <i>Journal of Comparative Neurology</i> , 2000 , 426, 534-548	3.4	29
47	B2 bradykinin receptor immunoreactivity in rat brain. <i>Journal of Comparative Neurology</i> , 2000 , 427, 1-18	3.4	66
46	Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. <i>Journal of Comparative Neurology</i> , 2000 , 427, 19-30	3.4	198
45	Making the counts count: the stereology revolution. <i>Journal of Chemical Neuroanatomy</i> , 2000 , 20, 1-2	3.2	10
44	Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. <i>Science</i> , 2000 , 290, 767-73	33.3	1076
43	Delivery of therapeutic molecules into the CNS. <i>Progress in Brain Research</i> , 2000 , 128, 323-32	2.9	15
42	B2 bradykinin receptor immunoreactivity in rat brain 2000 , 427, 1		1
41	Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. <i>Archives of Neurology</i> , 1999 , 56, 179-87		292
40	Estrogen receptor immunoreactivity within subregions of the rat forebrain: neuronal distribution and association with perikarya containing choline acetyltransferase. <i>Brain Research</i> , 1999 , 849, 253-74	3.7	89
39	Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. <i>Annals of Neurology</i> , 1999 , 46, 419-24	9.4	354
38	The first miracle in neurodegenerative disease: the discovery of oral levodopa. <i>Brain Research Bulletin</i> , 1999 , 50, 377-8	3.9	10
37	Lentiviral gene transfer to the nonhuman primate brain. Experimental Neurology, 1999, 160, 1-16	5.7	168
36	Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. <i>Journal of Comparative Neurology</i> , 1998 , 401, 253-265	3.4	252
35	Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease. <i>Movement Disorders</i> , 1998 , 13, 383-93	7	232
34	Cellular delivery of CNTF but not NT-4/5 prevents degeneration of striatal neurons in a rodent model of Huntington's disease. <i>Cell Transplantation</i> , 1998 , 7, 213-25	4	28
33	Dopaminergic transplants in patients with Parkinson's disease: neuroanatomical correlates of clinical recovery. <i>Experimental Neurology</i> , 1997 , 144, 41-6	5.7	85

32	Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer's disease. <i>Experimental Neurology</i> , 1997 , 146, 91-103	5.7	154
31	Fetal Grafting for Parkinson's Disease: Expression of Immune Markers in Two Patients with Functional Fetal Nigral Implants. <i>Cell Transplantation</i> , 1997 , 6, 213-219	4	95
30	Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease. <i>Nature</i> , 1997 , 386, 395-9	50.4	279
29	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. <i>Journal of Comparative Neurology</i> , 1997 , 385, 352-371	3.4	36
28	Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice: trophic and tropic effects in a rodent model of Huntington's disease. <i>Journal of Comparative Neurology</i> , 1997 , 387, 96-113	3.4	81
27	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway 1997 , 385, 352		1
26	Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington's disease. <i>Journal of Neuroscience</i> , 1996 , 16, 516	8 - 89	190
25	Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. <i>Journal of Comparative Neurology</i> , 1996 , 370, 203-30	3.4	249
24	Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. <i>New England Journal of Medicine</i> , 1995 , 332, 1118-24	59.2	764
23	Nerve growth factor in Alzheimer's disease: defective retrograde transport to nucleus basalis. <i>NeuroReport</i> , 1995 , 6, 1063-6	1.7	191
22	Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease. <i>Annals of Neurology</i> , 1995 , 38, 379-88	9.4	370
21	Nerve growth factor-like immunoreactive profiles in the primate basal forebrain and hippocampal formation. <i>Journal of Comparative Neurology</i> , 1994 , 341, 507-19	3.4	55
20	trk-immunoreactivity in the monkey central nervous system: forebrain. <i>Journal of Comparative Neurology</i> , 1994 , 349, 20-35	3.4	50
19	Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. <i>Journal of Comparative Neurology</i> , 1994 , 349, 148-64	3.4	175
18	TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. <i>Journal of Comparative Neurology</i> , 1994 , 350, 587-611	3.4	293
17	Galaninergic innervation of the cholinergic vertical limb of the diagonal band (Ch2) and bed nucleus of the stria terminalis in aging, Alzheimer's disease and Down's syndrome. <i>Dementia and Geriatric Cognitive Disorders</i> , 1993 , 4, 237-50	2.6	36
16	NGF receptor (p75)-immunoreactivity in the developing primate basal ganglia. <i>Journal of Comparative Neurology</i> , 1993 , 327, 359-75	3.4	20
15	NGF receptor (p75)-immunoreactivity within hypoglossal motor neurons following axotomy in monkeys. <i>Restorative Neurology and Neuroscience</i> , 1992 , 4, 411-7	2.8	5

14	p75 nerve growth factor receptor immunoreactivity in the human brainstem and spinal cord. <i>Brain Research</i> , 1992 , 589, 115-23	3.7	28
13	Galanin immunoreactivity in the primate central nervous system. <i>Journal of Comparative Neurology</i> , 1992 , 319, 479-500	3.4	148
12	Putative chromaffin cell survival and enhanced host-derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson's disease. <i>Annals of Neurology</i> , 1991 , 29, 405-12	9.4	197
11	Nerve growth factor receptor immunoreactivity within the nucleus basalis (Ch4) in Parkinson's disease: reduced cell numbers and co-localization with cholinergic neurons. <i>Brain Research</i> , 1991 , 539, 19-30	3.7	43
10	Neurogenesis of the magnocellular basal forebrain nuclei in the rhesus monkey. <i>Journal of Comparative Neurology</i> , 1990 , 291, 637-53	3.4	22
9	Galanin-like immunoreactivity within the primate basal forebrain: differential staining patterns between humans and monkeys. <i>Journal of Comparative Neurology</i> , 1990 , 294, 281-92	3.4	112
8	Response of the monkey cholinergic septohippocampal system to fornix transection: a histochemical and cytochemical analysis. <i>Journal of Comparative Neurology</i> , 1990 , 298, 443-57	3.4	25
7	Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons. <i>Journal of Comparative Neurology</i> , 1989 , 285, 196-217	3.4	230
6	Nerve growth factor receptor and choline acetyltransferase remain colocalized in the nucleus basalis (Ch4) of Alzheimer's patients. <i>Neurobiology of Aging</i> , 1989 , 10, 67-74	5.6	85
5	Loss of nerve growth factor receptor-containing neurons in Alzheimer's disease: a quantitative analysis across subregions of the basal forebrain. <i>Experimental Neurology</i> , 1989 , 105, 221-32	5.7	230
4	Nerve growth factor receptor immunoreactivity in the nonhuman primate (Cebus apella): distribution, morphology, and colocalization with cholinergic enzymes. <i>Journal of Comparative Neurology</i> , 1988 , 277, 465-86	3.4	173
3	Tyrosine hydroxylase-immunoreactive somata within the primate subfornical organ: species specificity. <i>Brain Research</i> , 1988 , 461, 221-9	3.7	15
2	Animal Models of Parkinson's Disease: The Non-Motor and Non-Dopaminergic Features79-92		
1	Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive		1