Ivan M Vatsouro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1738899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112664.	5.0	6
2	Assembling triazolated calix[4]semitubes by means of copper(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition. Organic Chemistry Frontiers, 2021, 8, 3853-3866.	4.5	6
3	XAS study of americium complexes with calixarene bearing carbamoylmethylphosphine oxide moieties. Mendeleev Communications, 2021, 31, 188-190.	1.6	1
4	Experimental and DFT investigation of structure and IR spectra of H-bonded associates of p-(3-carboxy-1-adamantyl)thiacalix[4]arene. Journal of Molecular Modeling, 2021, 27, 135.	1.8	0
5	Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer. Nanomaterials, 2021, 11, 3080.	4.1	12
6	Inherently dinuclear iridium(<scp>iii</scp>) <i>meso</i> architectures accessed by cyclometalation of calix[4]arene-based bis(aryltriazoles). Dalton Transactions, 2021, 50, 16765-16769.	3.3	7
7	Selective azide–alkyne cycloaddition reactions of azidoalkylated calixarenes. Organic Chemistry Frontiers, 2020, 7, 2432-2441.	4.5	13
8	Influence of <i>exo</i> -Adamantyl Groups and <i>endo</i> -OH Functions on the Threading of Calix[6]arene Macrocycle. Journal of Organic Chemistry, 2020, 85, 12585-12593.	3.2	2
9	A route to virtually unlimited functionalization of water-soluble p-sulfonatocalix[4]arenes. Chemical Communications, 2020, 56, 4122-4125.	4.1	12
10	The mechanism of promoter-induced zeolite nanosheet crystallization under hydrothermal and microwave irradiation conditions. Inorganic Chemistry Frontiers, 2020, 7, 1400-1410.	6.0	16
11	Constructing bridged multifunctional calixarenes by intramolecular indole coupling. Organic Chemistry Frontiers, 2019, 6, 3327-3341.	4.5	11
12	Triazolated calix[4]arenes from 2-azidoethylated precursors: is there a difference in the way the triazoles are attached to narrow rims?. New Journal of Chemistry, 2019, 43, 4562-4580.	2.8	15
13	Domino construction of a bullataketal core <i>via</i> double bond cleavage in activated dihydrofurans. Organic Chemistry Frontiers, 2018, 5, 1655-1663.	4.5	6
14	Synthesis of polyfunctional phosphorus-containing calixarenes in cycloaddition reactions of azides to alkynes. Chemistry of Heterocyclic Compounds, 2016, 52, 1042-1053.	1.2	5
15	Chiral Heteroditopic Baskets Designed from Triazolated Calixarenes and Short Peptides. Chemistry - A European Journal, 2016, 22, 12415-12423.	3.3	16
16	Copper(I)â€Catalyzed Cycloaddition of Azides to Multiple Alkynes: A Selectivity Study Using a Calixarene Framework. Chemistry - A European Journal, 2015, 21, 9528-9534.	3.3	20
17	Tuning conformations of calix[4]tubes by weak intramolecular interactions. New Journal of Chemistry, 2013, 37, 416-424.	2.8	11
18	Extraction of Americium(III), Plutonium(IV, V) and Neptunium(V) with Calixarenes. Mendeleev Communications, 2012, 22, 260-262.	1.6	8

Ivan M Vatsouro

#	Article	IF	CITATIONS
19	Calix[4]tubes: An Approach to Functionalization. Chemistry - A European Journal, 2012, 18, 10954-10968.	3.3	18
20	First synthesis of α-(3-R-1-adamantyl)sulfoacetic acids and their derivatives. Tetrahedron, 2012, 68, 4765-4772.	1.9	5
21	Narrow rim CMPO/adamantylcalix[4]arenes for the extraction of lanthanides and actinides. Tetrahedron, 2011, 67, 8092-8101.	1.9	27
22	Selfâ€Acylation of 1â€Adamantylacetic Acid in Trifluoroacetic Anhydride Medium: A Route to 2,4â€Bis(1â€adamantyl)acetoacetic Acid and Its Derivatives. European Journal of Organic Chemistry, 2010, 2010, 3754-3761.	2.4	10
23	Synthesis of functionalized 5-(3-R-1-adamantyl)uracils and related compounds. Tetrahedron, 2010, 66, 3058-3064.	1.9	14
24	Guest exchange in dimeric capsules formed by tetra-urea calix[4]arenes. Organic and Biomolecular Chemistry, 2008, 6, 998.	2.8	15
25	Adamantylcalixarenes with CMPO groups at the wide rim: synthesis and extraction of lanthanides and actinides. Tetrahedron, 2007, 63, 4748-4755.	1.9	19
26	Hydrogen-Bonded Dimers of Tetra-urea Calix[4]arenes Stable in THF. Organic Letters, 2007, 9, 1375-1377.	4.6	22
27	Substituent control of potassium and rubidium uptake by asymmetric calix[4]-thiacalix[4]tubes. Organic and Biomolecular Chemistry, 2006, 4, 1555.	2.8	14
28	Conformational Restriction of the Calix[6]arene Macrocycle by the Ritter Reaction. European Journal of Organic Chemistry, 2006, 2006, 522-530.	2.4	6
29	Triazolated calix[4]semitubes: assembling strategies towards long multicalixarene architectures. Organic Chemistry Frontiers, 0, , .	4.5	5