Emil R Unanue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1738804/publications.pdf

Version: 2024-02-01

77 7,713 39 72
papers citations h-index g-index

80 80 80 10098 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Blood leukocytes recapitulate diabetogenic peptide $\hat{a}\in MHC$ -II complexes displayed in the pancreatic islets. Journal of Experimental Medicine, 2021, 218, .	4.2	8
2	Chromogranin A Deficiency Confers Protection From Autoimmune Diabetes via Multiple Mechanisms. Diabetes, 2021, 70, 2860-2870.	0.3	5
3	Cytocidal macrophages in symbiosis with CD4 and CD8 T cells cause acute diabetes following checkpoint blockade of PD-1 in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31319-31330.	3.3	29
4	TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell, 2020, 182, 886-900.e17.	13.5	309
5	Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. Journal of Experimental Medicine, 2020, 217, .	4.2	78
6	The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides. Nature Immunology, 2020, 21, 455-463.	7.0	53
7	Position \hat{I}^2 57 of I-A ^{g7} controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Science Immunology, 2019, 4, .	5. 6	37
8	The Immunoreactive Platform of the Pancreatic Islets Influences the Development of Autoreactivity. Diabetes, 2019, 68, 1544-1551.	0.3	13
9	MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature, 2019, 574, 696-701.	13.7	563
10	The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia, 2018, 61, 1374-1383.	2.9	48
11	Antigen recognition in autoimmune diabetes: a novel pathway underlying disease initiation. Precision Clinical Medicine, 2018, 1, 102-110.	1.3	9
12	Type I and II Interferon Receptors Differentially Regulate Type 1 Diabetes Susceptibility in Male Versus Female NOD Mice. Diabetes, 2018, 67, 1830-1835.	0.3	20
13	Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature, 2018, 560, 107-111.	13.7	81
14	<i>Listeria monocytogenes</i> induces an interferonâ€enhanced activation of the integrated stress response that is detrimental for resolution of infection in mice. European Journal of Immunology, 2017, 47, 830-840.	1.6	14
15	Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update. Current Opinion in Immunology, 2017, 46, 30-37.	2.4	14
16	The islet-resident macrophage is in an inflammatory state and senses microbial products in blood. Journal of Experimental Medicine, 2017, 214, 2369-2385.	4.2	89
17	TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell, 2017, 170, 649-663.e13.	13.5	741
18	Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10418-E10427.	3.3	119

#	Article	IF	Citations
19	Macrophages in Endocrine Glands, with Emphasis on Pancreatic Islets. , 2017, , 825-831.		O
20	The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the <scp>NOD</scp> mouse. Immunological Reviews, 2016, 272, 183-201.	2.8	32
21	Macrophages in Endocrine Glands, with Emphasis on Pancreatic Islets. Microbiology Spectrum, 2016, 4,	1.2	9
22	Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. Journal of Autoimmunity, 2016, 71, 19-25.	3.0	21
23	Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites. Journal of Experimental Medicine, 2016, 213, 967-978.	4.2	39
24	Macrophages and dendritic cells in islets of Langerhans in diabetic autoimmunity: a lesson on cell interactions in a mini-organ. Current Opinion in Immunology, 2016, 43, 54-59.	2.4	26
25	The Secrets of the Class II MHC Peptidome Start To Be Revealed. Journal of Immunology, 2016, 196, 939-940.	0.4	3
26	Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annual Review of Immunology, 2016, 34, 265-297.	9.5	218
27	Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5496-502.	3.3	85
28	The pancreas anatomy conditions the origin and properties of resident macrophages. Journal of Experimental Medicine, 2015, 212, 1497-1512.	4.2	235
29	ZnT8-Reactive T Cells Are Weakly Pathogenic in NOD Mice but Can Participate in Diabetes Under Inflammatory Conditions. Diabetes, 2014, 63, 3438-3448.	0.3	18
30	The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Current Opinion in Immunology, 2014, 26, 32-40.	2.4	46
31	Antigen processing. Current Opinion in Immunology, 2014, 26, 138-139.	2.4	3
32	Antigen Presentation in the Autoimmune Diabetes of the NOD Mouse. Annual Review of Immunology, 2014, 32, 579-608.	9.5	49
33	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	6.6	1,120
34	A Minor Subset of Batf3-Dependent Antigen-Presenting Cells in Islets of Langerhans Is Essential for the Development of Autoimmune Diabetes. Immunity, 2014, 41, 657-669.	6.6	124
35	Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. Journal of Experimental Medicine, 2014, 211, 1977-1991.	4.2	229
36	Ita Askonas and her influence in the field of antigen presentation. Current Opinion in Immunology, 2014, 26, 111-114.	2.4	1

#	Article	IF	CITATIONS
37	Endoplasmic Reticulum: An Interface Between the Immune System and Metabolism. Diabetes, 2014, 63, 48-49.	0.3	11
38	Pathogenic CD4+ T cells recognizing an unstable peptide of insulin are directly recruited into islets bypassing local lymph nodes. Journal of Experimental Medicine, 2013, 210, 2403-2414.	4.2	42
39	Perspectives on anti-CD47 antibody treatment for experimental cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10886-10887.	3.3	15
40	Defining the Transcriptional and Cellular Landscape of Type 1 Diabetes in the NOD Mouse. PLoS ONE, 2013, 8, e59701.	1.1	101
41	Studies with Listeria Monocytogenes Lead the Way. Advances in Immunology, 2012, 113, 1-5.	1.1	6
42	Unconventional recognition of peptides by T cells and the implications for autoimmunity. Nature Reviews Immunology, 2012, 12, 721-728.	10.6	76
43	Starting in Immunology by Way of Immunopathology. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 1-18.	9.6	0
44	Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1561-1566.	3.3	102
45	Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1567-1572.	3.3	73
46	Register shifting of an insulin peptide–MHC complex allows diabetogenic T cells to escape thymic deletion. Journal of Experimental Medicine, 2011, 208, 2375-2383.	4.2	121
47	Altered Peptide Ligands Make Their Entry. Journal of Immunology, 2011, 186, 7-8.	0.4	14
48	Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nature Immunology, 2010, 11, 350-354.	7.0	156
49	Prediction of HLA-DQ8 \hat{I}^2 cell peptidome using a computational program and its relationship to autoreactive T cells. International Immunology, 2009, 21, 705-713.	1.8	24
50	Dendritic cells in islets of Langerhans constitutively present \hat{l}^2 cell-derived peptides bound to their class II MHC molecules. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6121-6126.	3.3	114
51	Weak Proinsulin Peptide–Major Histocompatibility Complexes Are Targeted in Autoimmune Diabetes in Mice. Diabetes, 2008, 57, 1852-1860.	0.3	47
52	Intracellular Release of Granzyme B Drives a Rapid Listeriolysin Oâ€induced T Cell Apoptosis. FASEB Journal, 2008, 22, 860.7.	0.2	0
53	Islets of Langerhans are the portal of entry for activated diabetogenic T cells mediated by resident islet dendritic cells. FASEB Journal, 2008, 22, 666.2.	0.2	0
54	The Insulin-Specific T Cells of Nonobese Diabetic Mice Recognize a Weak MHC-Binding Segment in More Than One Form. Journal of Immunology, 2007, 178, 6051-6057.	0.4	91

#	Article	IF	Citations
55	Viral Infections and Nonspecific Protection â€" Good or Bad?. New England Journal of Medicine, 2007, 357, 1345-1346.	13.9	5
56	Ito Cells, Stellate Cells, and Myofibroblasts: New Actors in Antigen Presentation. Immunity, 2007, 26, 9-10.	6.6	26
57	Some Old and Some New Findings on Antigen Processing and Presentation. , 2006, , 1-23.		0
58	From antigen processing to peptide-MHC binding. Nature Immunology, 2006, 7, 1277-1279.	7.0	12
59	Antigen Presentation: Lysoyme, Autoimmune Diabetes, and Listeria What Do They Have in Common?. Immunologic Research, 2005, 32, 267-292.	1.3	5
60	Natural peptides selected by diabetogenic DQ8 and murine I-Ag7 molecules show common sequence specificity. Journal of Clinical Investigation, 2005, 115, 2268-2276.	3.9	121
61	Absence of Lymph Nodes in NOD Mice Treated With Lymphotoxin-Â Receptor Immunoglobulin Protects From Diabetes. Diabetes, 2004, 53, 3115-3119.	0.3	50
62	Intracellular Pathogens and Antigen Presentationâ€"New Challenges with Legionella Pneumophila. Immunity, 2003, 18, 722-724.	6.6	5
63	In APCs, the Autologous Peptides Selected by the Diabetogenic I-Ag7 Molecule Are Unique and Determined by the Amino Acid Changes in the P9 Pocket. Journal of Immunology, 2002, 168, 1235-1243.	0.4	72
64	Perspective on antigen processing and presentation. Immunological Reviews, 2002, 185, 86-102.	2.8	87
65	The level of peptide-MHC complex determines the susceptibility to autoimmune diabetes: studies in HEL transgenic mice. European Journal of Immunology, 2001, 31, 3453-3459.	1.6	18
66	Deamidation of Asparagine in a Major Histocompatibility Complex–Bound Peptide Affects T Cell Recognition but Does Not Explain Type B Reactivity. Journal of Experimental Medicine, 2001, 194, 1165-1170.	4.2	24
67	Structural Basis of Peptide Binding and Presentation by the Type I Diabetes-Associated MHC Class II Molecule of NOD Mice. Immunity, 2000, 12, 699-710.	6.6	174
68	Mechanisms and consequences of peptide selection by the I-Ak class II molecule. Immunological Reviews, 1999, 172, 209-228.	2.8	39
69	Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. Nature, 1994, 371, 250-252.	13.7	163
70	Natural Immunity: A T-Cell-Independent Pathway of Macrophage Activation, Defined in the scid Mouse. Immunological Reviews, 1991, 124, 5-24.	2.8	322
71	Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature, 1990, 346, 574-576.	13.7	468
72	Low-temperature inhibition of antigen processing and iron uptake from transferrin: Deficits in endosome functions at 18 °C. European Journal of Immunology, 1990, 20, 323-329.	1.6	36

#	Article	IF	CITATIONS
73	Antigen presentation ¹ . FASEB Journal, 1989, 3, 2496-2502.	0.2	90
74	Mechanisms of Antigen Processing. Immunological Reviews, 1988, 106, 77-92.	2.8	66
75	Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature, 1987, 327, 713-715.	13.7	312
76	T-Cell Recognition of Lysozyme: The Biochemical Basis of Presentation. Immunological Reviews, 1987, 98, 171-187.	2.8	134
77	Innate Immunity in Bacterial Infections. , 0, , 93-103.		2