Wenhua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1738735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. Journal of Genetics and Genomics, 2022, 49, 726-734.	1.7	4
2	Molecular cloning and functional characterization of GmAAPTs from soybean (Glycine max). Plant Signaling and Behavior, 2021, 16, 1845048.	1.2	1
3	The rice aldehyde oxidase OsAO3 gene regulates plant growth, grain yield, and drought tolerance by participating in ABA biosynthesis. Biochemical and Biophysical Research Communications, 2021, 548, 189-195.	1.0	25
4	Rice shaker potassium channel <scp>OsAKT2</scp> positively regulates salt tolerance and grain yield by mediating K ⁺ redistribution. Plant, Cell and Environment, 2021, 44, 2951-2965.	2.8	41
5	Seed specifically over-expressing DGAT2A enhances oil and linoleic acid contents in soybean seeds. Biochemical and Biophysical Research Communications, 2021, 568, 143-150.	1.0	14
6	A bHLH protein, OsBIM1, positively regulates rice leaf angle by promoting brassinosteroid signaling. Biochemical and Biophysical Research Communications, 2021, 578, 129-135.	1.0	9
7	HSP70-3 Interacts with Phospholipase Dl´ and Participates in Heat Stress Defense. Plant Physiology, 2021, 185, 1148-1165.	2.3	27
8	An endoplasmic reticulum–localized cytochrome <i>b</i> ₅ regulates high-affinity K ⁺ transport in response to salt stress in rice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
9	Overexpression of soybean GmPLDÎ ³ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis. Plant Science, 2020, 290, 110298.	1.7	14
10	Involvement of Arabidopsis phospholipase D \hat{l} in regulation of ROS-mediated microtubule organization and stomatal movement upon heat shock. Journal of Experimental Botany, 2020, 71, 6555-6570.	2.4	29
11	Phosphatidic acid directly binds with rice potassium channel OsAKT2 to inhibit its activity. Plant Journal, 2020, 102, 649-665.	2.8	30
12	The ATP-binding cassette transporter OsPDR1 regulates plant growth and pathogen resistance by affecting jasmonates biosynthesis in rice. Plant Science, 2020, 298, 110582.	1.7	17
13	Multiple basic amino acid residues contribute to phosphatidic acid-mediated inhibition of rice potassium channel OsAKT2. Plant Signaling and Behavior, 2020, 15, 1789818.	1.2	2
14	Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Science, 2019, 287, 110190.	1.7	37
15	Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants, 2019, 5, 1012-1021.	4.7	73
16	Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. Journal of Plant Physiology, 2019, 242, 153019.	1.6	24
17	Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling. Plant Cell, 2019, 31, 1077-1093.	3.1	106
18	Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. Plant Cell, 2019, 31, 250-271.	3.1	97

Wenhua Zhang

#	Article	IF	CITATIONS
19	FLOURY SHRUNKEN ENDOSPERM1 Connects Phospholipid Metabolism and Amyloplast Development in Rice. Plant Physiology, 2018, 177, 698-712.	2.3	35
20	A phosphoinositideâ€specific phospholipase C pathway elicits stressâ€induced Ca ²⁺ signals and confers salt tolerance to rice. New Phytologist, 2017, 214, 1172-1187.	3.5	85
21	Peroxisomal CuAOζ and its product H2O2 regulate the distribution of auxin and IBA-dependent lateral root development in Arabidopsis. Journal of Experimental Botany, 2017, 68, 4851-4867.	2.4	33
22	Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 2220-2235.	2.8	45
23	Phosphatidic acid binds to and regulates guanine nucleotide exchange factor 8 (CEF8) activity in Arabidopsis. Functional Plant Biology, 2017, 44, 1029.	1.1	7
24	Fine mapping of <i>qSKC-1</i> , a major quantitative trait locus for shoot K ⁺ concentration, in rice seedlings grown under salt stress. Breeding Science, 2017, 67, 286-295.	0.9	11
25	Characterization and Fine Mapping of a Rice Leafâ€Rolling Mutant Deficient in Commissural Veins. Crop Science, 2017, 57, 2595-2604.	0.8	2
26	Small interfering <scp>RNA</scp> s from bidirectional transcripts of <i>Gh<scp>MML</scp>3_A12</i> regulate cotton fiber development. New Phytologist, 2016, 210, 1298-1310.	3.5	124
27	Arabidopsis thaliana constitutively active ROP11 interacts with the NADPH oxidase respiratory burst oxidase homologue F to regulate reactive oxygen species production in root hairs. Functional Plant Biology, 2016, 43, 221.	1.1	14
28	Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice. Molecular and Cellular Proteomics, 2016, 15, 1397-1411.	2.5	50
29	Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein and Cell, 2016, 7, 81-88.	4.8	16
30	The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Scientific Reports, 2015, 5, 14390.	1.6	95
31	The potassium transporter <scp>O</scp> s <scp>HAK</scp> 21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell and Environment, 2015, 38, 2766-2779.	2.8	155
32	Identification and Fine Mapping of a Mutation Conferring Saltâ€5ensitivity in Rice (<i>Oryza sativa</i>) Tj ETQo	0 0 0 rgBT 0.8	- /Oyerlock 10
33	The Rice High-Affinity Potassium Transporter1;1 Is Involved in Salt Tolerance and Regulated by an MYB-Type Transcription Factor. Plant Physiology, 2015, 168, 1076-1090.	2.3	206
34	A CC-NBS-LRR type gene GHNTR1 confers resistance to southern root-knot nematode in Nicotiana.benthamiana and Nicotiana.tabacum. European Journal of Plant Pathology, 2015, 142, 715-729.	0.8	11
35	Physiological characterisation and fine mapping of a salt-tolerant mutant in rice (Oryza sativa). Functional Plant Biology, 2015, 42, 1026.	1.1	22
36	The mitogen-activated protein kinase cascade MKK1–MPK4 mediates salt signaling in rice. Plant Science, 2014, 227, 181-189.	1.7	70

#	Article	IF	CITATIONS
37	Phosphatidic Acid Regulates Microtubule Organization by Interacting with MAP65-1 in Response to Salt Stress in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4555-4576.	3.1	219
38	Quantitative dissection of lipid degradation in rice seeds during accelerated aging. Plant Growth Regulation, 2012, 66, 49-58.	1.8	41
39	Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 1-9.	1.2	38