Francesca D Frentiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1738532/publications.pdf

Version: 2024-02-01

65 papers 2,909 citations

236833 25 h-index 50 g-index

70 all docs

70 docs citations

70 times ranked

4032 citing authors

#	Article	IF	CITATIONS
1	Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti. PLoS Neglected Tropical Diseases, 2012, 6, e1892.	1.3	334
2	Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia. PLoS Neglected Tropical Diseases, 2014, 8, e2688.	1.3	288
3	<i>Wolbachia i>uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector<i>Aedes aegypti i>. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9250-9255.</i></i>	3.3	225
4	Co-distribution and co-infection of chikungunya and dengue viruses. BMC Infectious Diseases, $2016, 16, 84.$	1.3	171
5	Wolbachia-Mediated Resistance to Dengue Virus Infection and Death at the Cellular Level. PLoS ONE, 2010, 5, e13398.	1.1	168
6	Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Neglected Tropical Diseases, 2015, 9, e0003894.	1.3	128
7	Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules, 2021, 26, 4917.	1.7	119
8	A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2018, 58, 341-348.	0.4	104
9	Archiving Primary Data: Solutions for Long-Term Studies. Trends in Ecology and Evolution, 2015, 30, 581-589.	4.2	98
10	Pedigree-free animal models: the relatedness matrix reloaded. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 639-647.	1,2	76
11	CLINES IN CUTICULAR HYDROCARBONS IN TWO DROSOPHILA SPECIES WITH INDEPENDENT POPULATION HISTORIES. Evolution; International Journal of Organic Evolution, 2010, 64, 1784-1794.	1.1	70
12	Adaptive evolution of color vision as seen through the eyes of butterflies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8634-8640.	3.3	66
13	Gene Duplication Is an Evolutionary Mechanism for Expanding Spectral Diversity in the Long-Wavelength Photopigments of Butterflies. Molecular Biology and Evolution, 2007, 24, 2016-2028.	3.5	66
14	4000 YEARS OF PHENOTYPIC CHANGE IN AN ISLAND BIRD: HETEROGENEITY OF SELECTION OVER THREE MICROEVOLUTIONARY TIMESCALES. Evolution; International Journal of Organic Evolution, 2008, 62, 2393-2410.	1.1	55
15	The new European invader <i>Aedes</i> (<i>Finlaya</i>) <i>koreicus</i> : a potential vector of chikungunya virus. Pathogens and Global Health, 2018, 112, 107-114.	1.0	55
16	Chikungunya virus in Asia – Pacific: a systematic review. Emerging Microbes and Infections, 2019, 8, 70-79.	3.0	55
17	Opsin Clines in Butterflies Suggest Novel Roles for Insect Photopigments. Molecular Biology and Evolution, 2015, 32, 368-379.	3.5	50
18	Multilocus Sequence Analysis Provides Insights into Molecular Epidemiology of Chlamydia pecorum Infections in Australian Sheep, Cattle, and Koalas. Journal of Clinical Microbiology, 2013, 51, 2625-2632.	1.8	48

#	Article	IF	CITATIONS
19	Zika Virus in the Male Reproductive Tract. Viruses, 2018, 10, 198.	1.5	48
20	Spatiotemporal patterns and climatic drivers of severe dengue in Thailand. Science of the Total Environment, 2019, 656, 889-901.	3.9	41
21	Vector competence of Australian Aedes aegypti and Aedes albopictus for an epidemic strain of Zika virus. PLoS Neglected Tropical Diseases, 2019, 13, e0007281.	1.3	38
22	Projecting the future of dengue under climate change scenarios: Progress, uncertainties and research needs. PLoS Neglected Tropical Diseases, 2020, 14, e0008118.	1.3	33
23	Polyandry and paternity skew in natural and experimental populations of <i>Drosophila serrata</i> Molecular Ecology, 2008, 17, 1589-1596.	2.0	32
24	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. PLoS Neglected Tropical Diseases, 2020, 14, e0007997.	1.3	31
25	Evolutionary potential of the extrinsic incubation period of dengue virus in <i>Aedes aegypti</i> Evolution; International Journal of Organic Evolution, 2016, 70, 2459-2469.	1.1	30
26	Comparative Susceptibility of Mosquito Populations in North Queensland, Australia to Oral Infection with Dengue Virus. American Journal of Tropical Medicine and Hygiene, 2014, 90, 422-430.	0.6	29
27	An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies. BMC Genomics, 2009, 10, 40.	1.2	26
28	Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011. Parasites and Vectors, 2014, 7, 586.	1.0	26
29	A butterfly eye's view of birds. BioEssays, 2008, 30, 1151-1162.	1.2	25
30	Title is missing!. Conservation Genetics, 2001, 2, 63-67.	0.8	21
31	Temperature modulates immune gene expression in mosquitoes during arbovirus infection. Open Biology, 2021, 11, 200246.	1.5	21
32	Intensity of Mutualism Breakdown Is Determined by Temperature Not Amplification of Wolbachia Genes. PLoS Pathogens, 2016, 12, e1005888.	2.1	21
33	Physical and Linkage Maps for <i>Drosophila serrata </i> , a Model Species for Studies of Clinal Adaptation and Sexual Selection. G3: Genes, Genomes, Genetics, 2012, 2, 287-297.	0.8	19
34	Extreme weather events and dengue outbreaks in Guangzhou, China: a time-series quasi-binomial distributed lag non-linear model. International Journal of Biometeorology, 2021, 65, 1033-1042.	1.3	19
35	Wolbachia strain wAlbB blocks replication of flaviviruses and alphaviruses in mosquito cell culture. Parasites and Vectors, 2020, 13, 54.	1.0	18
36	A portable approach for the surveillance of dengue virus-infected mosquitoes. Journal of Virological Methods, 2012, 183, 90-93.	1.0	17

#	Article	IF	Citations
37	Chikungunya Virus Transmission at Low Temperature by Aedes albopictus Mosquitoes. Pathogens, 2019, 8, 149.	1.2	17
38	A NativeWolbachiaEndosymbiont Does Not Limit Dengue Virus Infection in the MosquitoAedes notoscriptus(Diptera: Culicidae). Journal of Medical Entomology, 2016, 53, 401-408.	0.9	15
39	Laboratory colonization of the European invasive mosquito Aedes (Finlaya) koreicus. Parasites and Vectors, 2017, 10, 74.	1.0	15
40	A regional suitable conditions index to forecast the impact of climate change on dengue vectorial capacity. Environmental Research, 2021, 195, 110849.	3.7	15
41	Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability. Environmental Research, 2021, 196, 110900.	3.7	15
42	Using dengue epidemics and local weather in Bali, Indonesia to predict imported dengue in Australia. Environmental Research, 2019, 175, 213-220.	3.7	14
43	Zika Virus and Arthritis/Arthralgia: A Systematic Review and Meta-Analysis. Viruses, 2020, 12, 1137.	1.5	14
44	Natural variation at a single gene generates sexual antagonism across fitness components in Drosophila. Current Biology, 2022, 32, 3161-3169.e7.	1.8	14
45	Dynamic spatiotemporal trends of imported dengue fever in Australia. Scientific Reports, 2016, 6, 30360.	1.6	12
46	Lipids and Pathogen Blocking by Wolbachia. Trends in Parasitology, 2017, 33, 916-917.	1,5	12
47	El Niño Southern Oscillation, overseas arrivals and imported chikungunya cases in Australia: A time series analysis. PLoS Neglected Tropical Diseases, 2019, 13, e0007376.	1.3	12
48	Solutions for Archiving Data in Long-Term Studies: A Reply to Whitlock et al Trends in Ecology and Evolution, 2016, 31, 85-87.	4.2	10
49	Global Evolutionary History and Dynamics of Dengue Viruses Inferred from Whole Genome Sequences. Viruses, 2022, 14, 703.	1.5	9
50	Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors. Pathogens, 2020, 9, 668.	1,2	8
51	High relative humidity might trigger the occurrence of the second seasonal peak of dengue in the Philippines. Science of the Total Environment, 2020, 708, 134849.	3.9	7
52	Epidemic Potential for Local Transmission of Zika Virus in 2015 and 2016 in Queensland, Australia. PLOS Currents, 2016, 8, .	1.4	7
53	Seroprevalence of antibodies to primate erythroparvovirus 1 (B19V) in Australia. BMC Infectious Diseases, 2018, 18, 631.	1.3	6
54	Response to: Comment on Rohrscheib et al. 2016 "Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes". PLoS Pathogens, 2017, 13, e1006521.	2.1	5

#	Article	IF	CITATIONS
55	Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety. PLoS Neglected Tropical Diseases, 2020, 14, e0008438.	1.3	4
56	Does Bangkok have a central role in the dengue dynamics of Thailand? Parasites and Vectors, 2020, 13, 22.	1.0	4
57	Past and future epidemic potential of chikungunya virus in Australia. PLoS Neglected Tropical Diseases, 2021, 15, e0009963.	1.3	1
58	Title is missing!. , 2020, 14, e0008118.		0
59	Title is missing!. , 2020, 14, e0008118.		0
60	Title is missing!. , 2020, 14, e0008118.		0
61	Title is missing!. , 2020, 14, e0008118.		O
62	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14 , e0007997.		0
63	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14, e0007997.		O
64	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14, e0007997.		0
65	Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. , 2020, 14, e0007997.		О