
Zhenhua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directed Growth of Metalâ€Organic Frameworks and Their Derived Carbonâ€Based Network for Efficient Electrocatalytic Oxygen Reduction. Advanced Materials, 2016, 28, 2337-2344.	21.0	448
2	Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chemical Science, 2015, 6, 6624-6631.	7.4	378
3	Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Applied Catalysis B: Environmental, 2019, 247, 107-114.	20.2	378
4	Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chemical Communications, 2015, 51, 15880-15893.	4.1	361
5	A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy, 2016, 20, 294-304.	16.0	300
6	Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nature Communications, 2021, 12, 4679.	12.8	226
7	Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy, 2015, 12, 231-239.	16.0	175
8	Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 33697-33703.	8.0	175
9	Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nature Communications, 2022, 13, 147.	12.8	133
10	Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37, 98-107.	16.0	129
11	Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy, 2017, 41, 408-416.	16.0	126
12	Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction. Nano Energy, 2016, 25, 100-109.	16.0	124
13	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	19.5	123
14	Hierarchical Conducting Polymer@Clay Core-Shell Arrays for Flexible All-Solid-State Supercapacitor Devices. Small, 2015, 11, 3530-3538.	10.0	116
15	Ordered-Vacancy-Induced Cation Intercalation into Layered Double Hydroxides: A General Approach for High-Performance Supercapacitors. CheM, 2018, 4, 2168-2179.	11.7	105
16	Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. Journal of Materials Chemistry A, 2016, 4, 11516-11523.	10.3	104
17	Oxygen-rich carbon nanotube networks for enhanced lithium metal anode. Energy Storage Materials, 2018, 15, 308-314.	18.0	100
18	Polysulfide Confinement and Highly Efficient Conversion on Hierarchical Mesoporous Carbon Nanosheets for Li–S Batteries. Advanced Energy Materials, 2019, 9, 1901935.	19.5	93

Zhenhua Li

#	Article	IF	CITATIONS
19	Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)â^C Bond Cleavage by a Mnã€Doped Cobalt Oxyhydroxide Catalyst. Angewandte Chemie - International Edition, 2021, 60, 8976-8982.	13.8	93
20	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30, 2065-2088.	9.0	90
21	Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation. Applied Catalysis B: Environmental, 2021, 299, 120669.	20.2	83
22	Boosting Hydrogen Production by Electrooxidation of Urea over 3D Hierarchical Ni ₄ N/Cu ₃ N Nanotube Arrays. ACS Sustainable Chemistry and Engineering, 2019, 7, 13278-13285.	6.7	80
23	Selective Photoelectrocatalytic Glycerol Oxidation to Dihydroxyacetone via Enhanced Middle Hydroxyl Adsorption over a Bi ₂ O ₃ -Incorporated Catalyst. Journal of the American Chemical Society, 2022, 144, 7720-7730.	13.7	80
24	Host Modification of Layered Double Hydroxide Electrocatalyst to Boost the Thermodynamic and Kinetic Activity of Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009743.	14.9	71
25	Mesoporous graphene-layered double hydroxides free-standing films for enhanced flexible supercapacitors. Chemical Engineering Journal, 2016, 289, 85-92.	12.7	68
26	Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode. Nature Communications, 2021, 12, 6698.	12.8	68
27	Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. Chemical Engineering Journal, 2021, 407, 127178.	12.7	67
28	NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277, 119273.	20.2	57
29	An Electrocatalytic Strategy for C–C Bond Cleavage in Lignin Model Compounds and Lignin under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 1932-1940.	6.7	49
30	Plastic Waste Valorization by Leveraging Multidisciplinary Catalytic Technologies. ACS Catalysis, 2022, 12, 9307-9324.	11.2	47
31	Ultrathin Mesoporous Co ₃ O ₄ Nanosheet Arrays for High-Performance Lithium-Ion Batteries. ACS Omega, 2018, 3, 1675-1683.	3.5	46
32	Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions. Energy Storage Materials, 2021, 41, 380-394.	18.0	46
33	Layered double hydroxides and their derivatives for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 23738-23755.	10.3	45
34	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie - International Edition, 2019, 58, 3962-3966.	13.8	44
35	Confinement Synthesis Based on Layered Double Hydroxides: A New Strategy to Construct Singleâ€Atomâ€Containing Integrated Electrodes. Advanced Functional Materials, 2021, 31, 2008064.	14.9	43
36	Electrosynthesis of Well-Defined Metal–Organic Framework Films and the Carbon Nanotube Network Derived from Them toward Electrocatalytic Applications. ACS Applied Materials & Interfaces, 2018, 10, 34494-34501.	8.0	42

Zhenhua Li

#	Article	IF	CITATIONS
37	An atomic-confined-space separator for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 1896-1903.	10.3	41
38	Mass-loading independent electrocatalyst with high performance for oxygen reduction reaction and Zn-air battery based on Co-N-codoped carbon nanotube assembled microspheres. Chemical Engineering Journal, 2019, 373, 734-743.	12.7	40
39	Electrocatalytic oxidative upgrading of biomass platform chemicals: from the aspect of reaction mechanism. Chemical Communications, 2022, 58, 897-907.	4.1	39
40	Photoelectrochemical Catalysis toward Selective Anaerobic Oxidation of Alcohols. Chemistry - A European Journal, 2017, 23, 8142-8147.	3.3	35
41	Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Frontiers of Chemical Science and Engineering, 2018, 12, 537-554.	4.4	33
42	Highly efficient metal-free electrocatalysts toward oxygen reduction derived from carbon nanotubes@polypyrrole core–shell hybrids. Journal of Materials Chemistry A, 2016, 4, 18008-18014.	10.3	25
43	Atom-economical construction of carbon nanotube architectures for flexible supercapacitors with ultrahigh areal and volumetric capacities. Journal of Materials Chemistry A, 2018, 6, 21287-21294.	10.3	24
44	Controllable synthesis of core-shell Co@C@SiO2 catalysts for enhancing product selectivity in Fischer-Tropsch synthesis by tuning the mass transfer resistance. Journal of Energy Chemistry, 2020, 51, 199-206.	12.9	24
45	A bifunctional nonenzymatic flexible glucose microsensor based on CoFe-Layered double hydroxide. Nanoscale Advances, 2019, 1, 948-952.	4.6	23
46	Phase engineering of cobalt hydroxide toward cation intercalation. Chemical Science, 2021, 12, 1756-1761.	7.4	23
47	Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)â^C Bond Cleavage by a Mnâ€Đoped Cobalt Oxyhydroxide Catalyst. Angewandte Chemie, 2021, 133, 9058-9064.	2.0	22
48	Confinement of Zinc Salt in Ultrathin Heterogeneous Film to Stabilize Zinc Metal Anode. Small, 2021, 17, e2100722.	10.0	22
49	Efficient photocatalytic epoxidation of styrene over a quantum-sized SnO2 on carbon nitride as a heterostructured catalyst. Applied Catalysis B: Environmental, 2022, 309, 121268.	20.2	22
50	Fluorine enhanced nucleophilicity of TiO2 nanorod arrays: A general approach for dendrite-free anodes towards high-performance metal batteries. Nano Energy, 2022, 93, 106837.	16.0	21
51	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie, 2019, 131, 4002-4006.	2.0	13
52	Supercapacitors: Hierarchical Conducting Polymer@Clay Core-Shell Arrays for Flexible All-Solid-State Supercapacitor Devices (Small 29/2015). Small, 2015, 11, 3529-3529.	10.0	11
53	Metal vacancy-enriched layered double hydroxide for biomass molecule electrooxidation coupled with hydrogen production. Fundamental Research, 2024, 4, 69-76.	3.3	2