John Clinton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronomy, 2022, 6, 59-64.	4.2	9
2	Loss-Based Performance Assessment and Seismic Network Optimization for Earthquake Early Warning. Bulletin of the Seismological Society of America, 2022, 112, 1662-1677.	1.1	8
3	The Far Side of Mars: Two Distant Marsquakes Detected by InSight. The Seismic Record, 2022, 2, 88-99.	1.3	29
4	An autonomous lunar geophysical experiment package (ALGEP) for future space missions. Experimental Astronomy, 2022, 54, 617-640.	1.6	2
5	Monitoring microseismicity of the Hengill Geothermal Field in Iceland. Scientific Data, 2022, 9, 220.	2.4	9
6	Low-Frequency Marsquakes and Where to Find Them: Back Azimuth Determination Using a Polarization Analysis Approach. Bulletin of the Seismological Society of America, 2022, 112, 1787-1805.	1.1	24
7	Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars. Tectonophysics, 2022, 837, 229434.	0.9	18
8	Combined Large- <i>N</i> Seismic Arrays and DAS Fiber Optic Cables across the Hengill Geothermal Field, Iceland. Seismological Research Letters, 2022, 93, 2498-2514.	0.8	5
9	Companion guide to the marsquake catalog from InSight, Sols 0–478: Data content and non-seismic events. Physics of the Earth and Planetary Interiors, 2021, 310, 106597.	0.7	64
10	The Marsquake catalogue from InSight, sols 0–478. Physics of the Earth and Planetary Interiors, 2021, 310, 106595.	0.7	97
11	Super High Frequency Events: A New Class of Events Recorded by the InSight Seismometers on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006599.	1.5	19
12	The Polarization of Ambient Noise on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006545.	1.5	33
13	Measuring Fundamental and Higher Mode Surface Wave Dispersion on Mars From Seismic Waveforms. Earth and Space Science, 2021, 8, e2020EA001263.	1.1	0
14	Highâ€Frequency Seismic Events on Mars Observed by InSight. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006670.	1.5	40
15	Earthquakes in Switzerland and surrounding regions during 2017 and 2018. Swiss Journal of Geosciences, 2021, 114, .	0.5	17
16	Kalman Filter-Based Fusion of Collocated Acceleration, GNSS and Rotation Data for 6C Motion Tracking. Sensors, 2021, 21, 1543.	2.1	5
17	Accessing European Strong-Motion Data: An Update on ORFEUS Coordinated Services. Seismological Research Letters, 2021, 92, 1642-1658.	0.8	12
18	Finding SEIS North on Mars: Comparisons Between SEIS Sundial, Inertial and Imaging Measurements and Consequences for Seismic Analysis. Earth and Space Science, 2021, 8, e2020EA001286.	1.1	3

#	Article	IF	CITATIONS
19	EIDA: The European Integrated Data Archive and Service Infrastructure within ORFEUS. Seismological Research Letters, 2021, 92, 1788-1795.	0.8	31
20	A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006538.	1.5	33
21	First Focal Mechanisms of Marsquakes. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006546.	1.5	43
22	Magnitude Scales for Marsquakes Calibrated from InSight Data. Bulletin of the Seismological Society of America, 2021, 111, 3003-3015.	1.1	25
23	Upper mantle structure of Mars from InSight seismic data. Science, 2021, 373, 434-438.	6.0	105
24	Seismic detection of the martian core. Science, 2021, 373, 443-448.	6.0	169
25	FinDerS(+): Real-Time Earthquake Slip Profiles and Magnitudes Estimated from Backprojected Displacement with Consideration of Fault Source Maturity Gradient. Frontiers in Earth Science, 2021, 9, .	0.8	3
26	Shear wave splitting in the Alpine region. Geophysical Journal International, 2021, 227, 1996-2015.	1.0	12
27	A Reconstruction Algorithm for Temporally Aliased Seismic Signals Recorded by the InSight Mars Lander. Earth and Space Science, 2021, 8, e2020EA001234.	1.1	6
28	Preliminary Results of an Earthquake Early Warning System in Costa Rica. Frontiers in Earth Science, 2021, 9, .	0.8	6
29	Status of Earthquake Early Warning in Switzerland. Frontiers in Earth Science, 2021, 9, .	0.8	9
30	Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars <i>InSight</i> Mission. Bulletin of the Seismological Society of America, 2021, 111, 2982-3002.	1.1	42
31	Resonances and Lander Modes Observed by InSight on Mars (1–9ÂHz). Bulletin of the Seismological Society of America, 2021, 111, 2924-2950.	1.1	30
32	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	1.8	13
33	Seismic High-Resolution Acquisition Electronics for the NASA InSight Mission on Mars. Bulletin of the Seismological Society of America, 2021, 111, 2909-2923.	1.1	17
34	Resonances of the InSight Seismometer on Mars. Bulletin of the Seismological Society of America, 2021, 111, 2951-2963.	1.1	15
35	The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. Nature Communications, 2021, 12, 6756.	5.8	40
36	Anatomy of Continuous Mars SEIS and Pressure Data from Unsupervised Learning. Bulletin of the Seismological Society of America, 2021, 111, 2964-2981.	1.1	14

#	Article	IF	CITATIONS
37	Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology, 2020, 351, 106933.	1.1	100
38	A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006382.	1.5	24
39	Detection, Analysis, and Removal of Clitches From InSight's Seismic Data From Mars. Earth and Space Science, 2020, 7, e2020EA001317.	1.1	75
40	MSS/1: Single‧tation and Singleâ€Event Marsquake Inversion. Earth and Space Science, 2020, 7, e2020EA001118.	1.1	16
41	Geophysical Observations of Phobos Transits by InSight. Geophysical Research Letters, 2020, 47, e2020GL089099.	1.5	10
42	Comparison and Combination of GNSS and Strong-Motion Observations: A Case Study of the 2016 MwÂ7.0 Kumamoto Earthquake. Bulletin of the Seismological Society of America, 2020, 110, 2647-2660.	1.1	7
43	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	5.4	161
44	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	5.4	207
45	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	5.4	194
46	Estimating Rupture Dimensions of Three Major Earthquakes in Sichuan, China, for Early Warning and Rapid Loss Estimates. Bulletin of the Seismological Society of America, 2020, 110, 920-936.	1.1	11
47	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	5.4	274
48	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	3.7	238
49	Estimation of the Seismic Moment Rate from an Incomplete Seismicity Catalog, in the Context of the InSight Mission to Mars. Bulletin of the Seismological Society of America, 2019, 109, 1125-1147.	1.1	7
50	Sparse Reconstruction of Aliased Seismic Signals Recorded During the Insight Mars Mission. , 2019, , .		1
51	Investigation of the Central Adriatic lithosphere structure with the AlpArray-CASE seismic experiment. Geofizika, 2019, 35, 103-128.	0.1	5
52	The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen. Surveys in Geophysics, 2018, 39, 1009-1033.	2.1	138
53	The November 2017 <i>M</i> _w 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 2018, 360, 1003-1006.	6.0	325
54	Pick- and waveform-based techniques for real-time detection of induced seismicity. Geophysical Journal International, 2018, 213, 868-884.	1.0	40

#	Article	IF	CITATIONS
55	Earthquakes in Switzerland and surrounding regions during 2015 and 2016. Swiss Journal of Geosciences, 2018, 111, 221-244.	0.5	22
56	FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization. Geophysical Journal International, 2018, 212, 725-742.	1.0	61
57	Magnitude Scales for Marsquakes. Bulletin of the Seismological Society of America, 2018, 108, 2764-2777.	1.1	18
58	The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Science Reviews, 2018, 214, 1.	3.7	41
59	Impact-Seismic Investigations of the InSight Mission. Space Science Reviews, 2018, 214, 1.	3.7	48
60	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	3.7	88
61	ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations. Natural Hazards, 2018, 92, 1211-1235.	1.6	9
62	Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Science Reviews, 2017, 211, 611-650.	3.7	80
63	Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation. Earth and Planetary Science Letters, 2017, 471, 54-64.	1.8	60
64	Bayesian ISOLA: new tool for automated centroid moment tensor inversion. Geophysical Journal International, 2017, 210, 693-705.	1.0	41
65	Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Reviews of Geophysics, 2017, 55, 310-340.	9.0	235
66	Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity. Seismological Research Letters, 2017, 88, 1290-1302.	0.8	37
67	From Initial Models of Seismicity, Structure and Noise to Synthetic Seismograms for Mars. Space Science Reviews, 2017, 211, 595-610.	3.7	25
68	A probabilistic framework for single-station location of seismicity on Earth and Mars. Physics of the Earth and Planetary Interiors, 2017, 262, 48-65.	0.7	50
69	State-of-the art and future of earthquake early warning in the European region. Bulletin of Earthquake Engineering, 2016, 14, 2441-2458.	2.3	55
70	The Virtual Seismologist in SeisComP3: A New Implementation Strategy for Earthquake Early Warning Algorithms. Seismological Research Letters, 2016, 87, 363-373.	0.8	18
71	Evidence for universal earthquake rupture initiation behavior. Geophysical Research Letters, 2016, 43, 7991-7996.	1.5	78
72	Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Physics of the Earth and Planetary Interiors, 2016, 258, 28-42.	0.7	56

#	Article	IF	CITATIONS
73	The Engineering Strongâ€Motion Database: A Platform to Access Panâ€European Accelerometric Data. Seismological Research Letters, 2016, 87, 987-997.	0.8	90
74	Introducing the European Rapid Raw Strongâ€Motion Database. Seismological Research Letters, 2016, 87, 977-986.	0.8	18
75	Earthquake early warning and operational earthquake forecasting as real-time hazard information to mitigate seismic risk at nuclear facilities. Bulletin of Earthquake Engineering, 2016, 14, 2495-2512.	2.3	30
76	An Open‣ource Earthquake Early Warning Display. Seismological Research Letters, 2016, 87, 737-742.	0.8	15
77	Earthquakes in Switzerland and surrounding regions during 2014. Swiss Journal of Geosciences, 2015, 108, 425-443.	0.5	24
78	Assessment of high-rate GPS using a single-axis shake table. Journal of Geodesy, 2015, 89, 697-709.	1.6	36
79	Anatomy of an Earthquake Early Warning (EEW) Alert: Predicting Time Delays for an End-to-End EEW System. Seismological Research Letters, 2015, 86, 830-840.	0.8	42
80	The Gutenberg Algorithm: Evolutionary Bayesian Magnitude Estimates for Earthquake Early Warning with a Filter Bank. Bulletin of the Seismological Society of America, 2015, 105, 2774-2786.	1.1	30
81	Evaluating the effect of network density and geometric distribution on kinematic source inversion models. Geophysical Journal International, 2015, 200, 1-16.	1.0	10
82	Why Seismic Networks Need Digital Object Identifiers. Eos, 2015, 96, .	0.1	8
83	Earthquakes in Switzerland and surrounding regions during 2013. Swiss Journal of Geosciences, 2014, 107, 359-375.	0.5	27
84	Seismic Network in Greenland Monitors Earth and Ice System. Eos, 2014, 95, 13-14.	0.1	43
85	New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps. Geophysical Journal International, 2014, 200, 421-438.	1.0	40
86	Deep icequakes: What happens at the base of Alpine glaciers?. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1720-1728.	1.0	27
87	Earthquakes in Switzerland and surrounding regions during 2012. Swiss Journal of Geosciences, 2013, 106, 543-558.	0.5	19
88	A High- and Low-Noise Model for High-Quality Strong-Motion Accelerometer Stations. Earthquake Spectra, 2013, 29, 85-102.	1.6	48
89	Calving event detection by observation of seiche effects on the Greenland fjords. Journal of Glaciology, 2013, 59, 162-178.	1.1	19
90	An Almost Fair Comparison Between Earthworm and SeisComp3. Seismological Research Letters, 2012, 83, 833-833.	0.8	2

#	Article	IF	CITATIONS
91	An Almost Fair Comparison Between Earthworm and SeisComp3. Seismological Research Letters, 2012, 83, 720-727.	0.8	40
92	Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland. Annals of Glaciology, 2012, 53, 79-84.	2.8	30
93	Earthquakes in Switzerland and surrounding regions during 2011. Swiss Journal of Geosciences, 2012, 105, 463-476.	0.5	21
94	A New Empirical Magnitude Scaling Relation for Switzerland. Bulletin of the Seismological Society of America, 2011, 101, 3088-3095.	1.1	45
95	Local and regional minimum 1D models for earthquake location and data quality assessment in complex tectonic regions: application to Switzerland. Swiss Journal of Geosciences, 2011, 104, 455-469.	0.5	28
96	Earthquakes in Switzerland and surrounding regions during 2010. Swiss Journal of Geosciences, 2011, 104, 537-547.	0.5	11
97	The Current State of Strong Motion Monitoring in Switzerland. Geotechnical, Geological and Earthquake Engineering, 2011, , 219-233.	0.1	10
98	The European-Mediterranean Distributed Accelerometric Data-Base. Geotechnical, Geological and Earthquake Engineering, 2011, , 115-128.	0.1	5
99	Evidence for Near-Horizontal Tensile Faulting at the Base of Gornergletscher, a Swiss Alpine Glacier. Bulletin of the Seismological Society of America, 2010, 100, 458-472.	1.1	38
100	Earthquakes in Switzerland and surrounding regions during 2009. Swiss Journal of Geosciences, 2010, 103, 535-549.	0.5	19
101	Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude. Geophysical Journal International, 2010, 183, 407-420.	1.0	90
102	Earthquakes in Switzerland and surrounding regions during 2008. Swiss Journal of Geosciences, 2009, 102, .	0.5	10
103	Moment Tensor Inversions of Icequakes on Gornergletscher, Switzerland. Bulletin of the Seismological Society of America, 2009, 99, 852-870.	1.1	76
104	Earthquakes in Switzerland and surrounding regions during 2007. Swiss Journal of Geosciences, 2008, 101, 659-667.	0.5	18
105	Earthquakes in Switzerland and surrounding regions during 2006. Swiss Journal of Geosciences, 2007, 100, 517-528.	0.5	29
106	The Observed Wander of the Natural Frequencies in a Structure. Bulletin of the Seismological Society of America, 2006, 96, 237-257.	1.1	264
107	Southern California Seismic Network Update. Seismological Research Letters, 2006, 77, 389-395.	0.8	11
108	An Evaluation of the SCSN Moment Tensor Solutions: Robustness of the Mw Magnitude Scale, Style of Faulting, and Automation of the Method. Bulletin of the Seismological Society of America, 2006, 96, 1689-1705.	1.1	83

12.0

7

#	Article	IF	CITATIONS
109	The Current State of Seismic Monitoring in Puerto Rico. Seismological Research Letters, 2006, 77, 532-543.	0.8	25
110	Southern California Seismic Network Update. Seismological Research Letters, 2006, 77, 392-398.	0.8	7
111	Potential Advantages of a Strong-motion Velocity Meter over a Strong-motion Accelerometer. Seismological Research Letters, 2002, 73, 332-342.	0.8	66
112	The Potential of Highâ€Rate GPS for Strong Ground Motion Assessment. Bulletin of the Seismological Society of America, 0, , .	1.1	15
113	Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity. Seismological Research Letters, 0, , .	0.8	5
114	Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization. Advances in Geosciences, 0, 43, 15-29.	12.0	21
115	Preface: Improving seismic networks performances: from site selection to data integration (EGU2014) Tj ETQq1 1	0.784314 12.0	4 rgBT /Over _

Full-Waveform based methods for Microseismic Monitoring Operations: an Application to Natural and Induced Seismicity in the Hengill Geothermal Area, Iceland. Advances in Geosciences, 0, 54, 129-136.