HyungKuk Ju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737485/publications.pdf Version: 2024-02-01

НунмсКик Ін

#	Article	IF	CITATIONS
1	Selective conversion of N2 to NH3 on highly dispersed RuO2 using amphiphilic ionic liquid-anchored fibrous carbon structure. Journal of Energy Chemistry, 2022, 67, 474-482.	7.1	19
2	Experimental and DFT studies on the equilibrium properties, kinetics, and mechanism of nitric oxide removal using metal-EDTA and ferrous thiochelates. Chemical Engineering Journal, 2022, 431, 134010.	6.6	2
3	Green ammonia synthesis using CeO ₂ /RuO ₂ nanolayers on vertical graphene catalyst <i>via</i> electrochemical route in alkaline electrolyte. Nanoscale, 2022, 14, 1395-1408.	2.8	11
4	Rhodium-molybdenum oxide electrocatalyst with dual active sites for electrochemical ammonia synthesis under neutral pH condition. Journal of Electroanalytical Chemistry, 2021, 896, 115157.	1.9	10
5	Comparison between Fe ₂ O ₃ /C and Fe ₃ C/Fe ₂ O ₃ /Fe/C Electrocatalysts for N ₂ Reduction in an Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 61316-61323.	4.0	7
6	Insights into Nitrogenase Bioelectrocatalysis for Green Ammonia Production. ChemSusChem, 2020, 13, 4856-4865.	3.6	28
7	Engineering a solid-state metalloprotein hydrogen evolution catalyst. Scientific Reports, 2020, 10, 3774.	1.6	4
8	Enhanced corrosion tolerance and highly durable ORR activity by low Pt electrocatalyst on unique pore structured CNF in PEM fuel cell. Electrochimica Acta, 2020, 348, 136346.	2.6	40
9	Challenges and trends in developing technology for electrochemically reducing CO2 in solid polymer electrolyte membrane reactors. Journal of CO2 Utilization, 2019, 32, 178-186.	3.3	36
10	Polymer Electrolyte Membrane Technologies Integrated With Renewable Energy for Hydrogen Production. , 2019, , 235-259.		15
11	Role of iron species as mediator in a PEM based carbon-water co-electrolysis for cost-effective hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 9144-9152.	3.8	28
12	Methanol-water co-electrolysis for sustainable hydrogen production with PtRu/C-SnO2 electro-catalyst. Ionics, 2018, 24, 2367-2378.	1.2	13
13	A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Applied Energy, 2018, 231, 502-533.	5.1	167
14	The role of nanosized SnO 2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis. Electrochimica Acta, 2017, 229, 39-47.	2.6	51
15	Direct Carbon Fuel Cells. , 2017, , 317-329.		6
16	Solar Fuels. , 2017, , 223-259.		3
17	Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation. Electrochimica Acta, 2016, 212, 744-757.	2.6	34
18	Influence of the mediating behaviour of Sn according to its particle size on a Ni/yttria-stabilised zirconia porous anode structure in a direct carbon fuel cell. RSC Advances, 2016, 6, 109036-109044.	1.7	3

НуимсКик Ји

#	Article	IF	CITATIONS
19	Ameliorated performance in a direct carbon fuel cell using Sn mediator on Ni–YSZ anode surface. Catalysis Today, 2016, 260, 158-164.	2.2	14
20	High-temperature liquid Sn-air energy storage cell. Journal of Energy Chemistry, 2015, 24, 614-619.	7.1	8
21	Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide. Journal of Materials Chemistry A, 2015, 3, 3029-3034.	5.2	95
22	Durable power performance of a direct ash-free coal fuel cell. Electrochimica Acta, 2014, 115, 511-517.	2.6	55
23	The Activity of Ash-free Coal in Direct Carbon Fuel Cells. ECS Transactions, 2013, 50, 71-79.	0.3	4
24	Electrocatalytic Reduction of Gas-Phased CO2 on Nano-Sized Sn Electrode Surface. ECS Transactions, 2013, 53, 41-47.	0.3	6
25	High-Density Nanoporous Structures for Enhanced Electrocatalysis. Journal of Physical Chemistry C, 2012, 116, 2915-2918.	1.5	5
26	Fast and selective Cu2O nanorod growth into anodic alumina templates via electrodeposition. Current Applied Physics, 2012, 12, 60-64.	1.1	29
27	A high-performing nanostructured TiO2 filter for volatile organic compounds using atomic layer deposition. Chemical Communications, 2011, 47, 5605-5607.	2.2	30
28	Enhanced anode interface for electrochemical oxidation of solid fuel in direct carbon fuel cells: The role of liquid Sn in mixed state. Journal of Power Sources, 2011, , .	4.0	9
29	Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Current Applied Physics, 2011, 11, 986-988.	1.1	97
30	Atomic layer deposition of TiO2 nanotubes and its improved electrostatic capacitance. Electrochemistry Communications, 2010, 12, 210-212.	2.3	25