List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	13.7	21,074
2	The Pfam protein families database. Nucleic Acids Research, 2007, 36, D281-D288.	6.5	6,372
3	Pfam: the protein families database. Nucleic Acids Research, 2014, 42, D222-D230.	6.5	5,425
4	The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 2016, 44, D279-D285.	6.5	5,391
5	UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 2021, 49, D480-D489.	6.5	4,709
6	HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 2011, 39, W29-W37.	6.5	4,492
7	The Pfam protein families database in 2019. Nucleic Acids Research, 2019, 47, D427-D432.	6.5	3,937
8	The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 2019, 47, W636-W641.	6.5	3,820
9	The Pfam protein families database. Nucleic Acids Research, 2012, 40, D290-D301.	6.5	3,306
10	The Pfam protein families database. Nucleic Acids Research, 2004, 32, 138D-141.	6.5	3,084
11	Pfam: The protein families database in 2021. Nucleic Acids Research, 2021, 49, D412-D419.	6.5	3,068
12	The Pfam protein families database. Nucleic Acids Research, 2010, 38, D211-D222.	6.5	2,693
13	The Pfam Protein Families Database. Nucleic Acids Research, 2002, 30, 276-280.	6.5	2,067
14	Pfam: clans, web tools and services. Nucleic Acids Research, 2006, 34, D247-D251.	6.5	2,030
15	Highly accurate protein structure prediction for the human proteome. Nature, 2021, 596, 590-596.	13.7	1,773
16	InterPro: the integrative protein signature database. Nucleic Acids Research, 2009, 37, D211-D215.	6.5	1,712
17	HMMER web server: 2018 update. Nucleic Acids Research, 2018, 46, W200-W204.	6.5	1,432
18	The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 2021, 49, D344-D354.	6.5	1,385

#	Article	IF	CITATIONS
19	InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Research, 2017, 45, D190-D199.	6.5	1,358
20	Rfam: an RNA family database. Nucleic Acids Research, 2003, 31, 439-441.	6.5	1,296
21	InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 2019, 47, D351-D360.	6.5	1,291
22	Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 2004, 33, D121-D124.	6.5	1,255
23	The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 2018, 46, D624-D632.	6.5	1,234
24	Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 2013, 41, e121-e121.	6.5	1,214
25	The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research, 2015, 43, D213-D221.	6.5	1,205
26	The Pfam Protein Families Database. Nucleic Acids Research, 2000, 28, 263-266.	6.5	1,173
27	Rfam 12.0: updates to the RNA families database. Nucleic Acids Research, 2015, 43, D130-D137.	6.5	1,000
28	InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research, 2012, 40, D306-D312.	6.5	921
29	A new genomic blueprint of the human gut microbiota. Nature, 2019, 568, 499-504.	13.7	901
30	HMMER web server: 2015 update. Nucleic Acids Research, 2015, 43, W30-W38.	6.5	849
31	Rfam: updates to the RNA families database. Nucleic Acids Research, 2009, 37, D136-D140.	6.5	820
32	Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 2018, 46, D335-D342.	6.5	819
33	MEROPS: the peptidase database. Nucleic Acids Research, 2010, 38, D227-D233.	6.5	786
34	<i>MEROPS</i> : the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2014, 42, D503-D509.	6.5	782
35	Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 2013, 41, D226-D232.	6.5	745
36	Twenty years of the <i>MEROPS</i> database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2016, 44, D343-D350.	6.5	648

#	Article	IF	CITATIONS
37	A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology, 2021, 39, 105-114.	9.4	628
38	The Dfam database of repetitive DNA families. Nucleic Acids Research, 2016, 44, D81-D89.	6.5	543
39	Single-particle electron cryo-microscopy: towards atomic resolution. Quarterly Reviews of Biophysics, 2000, 33, 307-369.	2.4	535
40	Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research, 2018, 46, D802-D808.	6.5	489
41	InterPro, progress and status in 2005. Nucleic Acids Research, 2004, 33, D201-D205.	6.5	478
42	Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 2021, 49, D192-D200.	6.5	475
43	New developments in the InterPro database. Nucleic Acids Research, 2007, 35, D224-D228.	6.5	444
44	A human gut bacterial genome and culture collection for improved metagenomic analyses. Nature Biotechnology, 2019, 37, 186-192.	9.4	420
45	Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Research, 2011, 39, D141-D145.	6.5	355
46	Massive expansion of human gut bacteriophage diversity. Cell, 2021, 184, 1098-1109.e9.	13.5	331
47	Non oding RNA Analysis Using the Rfam Database. Current Protocols in Bioinformatics, 2018, 62, e51.	25.8	309
48	Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinformatics, 2014, 15, 7.	1.2	298
49	Microbial abundance, activity and population genomic profiling with mOTUs2. Nature Communications, 2019, 10, 1014.	5.8	298
50	MGnify: the microbiome analysis resource in 2020. Nucleic Acids Research, 2020, 48, D570-D578.	6.5	296
51	iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics, 2005, 21, 410-412.	1.8	295
52	The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 2019, 176, 391-403.e19.	13.5	289
53	The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission. Cell Host and Microbe, 2010, 8, 377-387.	5.1	267
54	QuickTree: building huge Neighbour-Joining trees of protein sequences. Bioinformatics, 2002, 18, 1546-1547.	1.8	249

#	Article	IF	CITATIONS
55	Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Research, 2012, 41, D70-D82.	6.5	243
56	Predicting active site residue annotations in the Pfam database. BMC Bioinformatics, 2007, 8, 298.	1.2	239
57	Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Research, 2019, 47, 10994-11006.	6.5	236
58	The PASTA domain: a β-lactam-binding domain. Trends in Biochemical Sciences, 2002, 27, 438-440.	3.7	204
59	DUFs: families in search of function. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1148-1152.	0.7	203
60	EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Research, 2018, 46, D726-D735.	6.5	175
61	RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Research, 2017, 45, D128-D134.	6.5	174
62	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	15.2	170
63	Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Current Opinion in Structural Biology, 2013, 23, 443-450.	2.6	166
64	The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases. BMC Bioinformatics, 2004, 5, 109.	1.2	158
65	iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Research, 2014, 42, D364-D373.	6.5	156
66	RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 2019, 47, D221-D229.	6.5	153
67	Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Computational Biology, 2016, 12, e1004862.	1.5	147
68	Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Research, 2022, 50, D996-D1003.	6.5	141
69	Using deep learning to annotate the protein universe. Nature Biotechnology, 2022, 40, 932-937.	9.4	133
70	TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Research, 2014, 42, D922-D925.	6.5	125
71	The HMMER Web Server for Protein Sequence Similarity Search. Current Protocols in Bioinformatics, 2017, 60, 3.15.1-3.15.23.	25.8	119
72	Pfam 10 years on: 10 000 families and still growing. Briefings in Bioinformatics, 2008, 9, 210-219.	3.2	114

#	Article	IF	CITATIONS
73	Protein interactions in human genetic diseases. Genome Biology, 2008, 9, R9.	13.9	110
74	Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings in Bioinformatics, 2021, 22, 642-663.	3.2	110
75	A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Research, 2013, 41, 4549-4564.	6.5	108
76	The European Bioinformatics Institute in 2016: Data growth and integration. Nucleic Acids Research, 2016, 44, D20-D26.	6.5	108
77	The evolution of protein domain families. Biochemical Society Transactions, 2009, 37, 751-755.	1.6	106
78	RNAcentral: an international database of ncRNA sequences. Nucleic Acids Research, 2015, 43, D123-D129.	6.5	103
79	New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiology, 2003, 3, 3.	1.3	98
80	EBI metagenomics in 2016 - an expanding and evolving resource for the analysis and archiving of metagenomic data. Nucleic Acids Research, 2016, 44, D595-D603.	6.5	97
81	Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments. GigaScience, 2018, 7, .	3.3	95
82	Representative Proteomes: A Stable, Scalable and Unbiased Proteome Set for Sequence Analysis and Functional Annotation. PLoS ONE, 2011, 6, e18910.	1.1	94
83	Quantifying the mechanisms of domain gain in animal proteins. Genome Biology, 2010, 11, R74.	13.9	93
84	On expert curation and scalability: UniProtKB/Swiss-Prot as a case study. Bioinformatics, 2017, 33, 3454-3460.	1.8	91
85	Asparagine Peptide Lyases. Journal of Biological Chemistry, 2011, 286, 38321-38328.	1.6	89
86	Structure and distribution of pentapeptide repeats in bacteria. Protein Science, 1998, 7, 1477-1480.	3.1	87
87	Integrating biological data $\hat{a} \in$ " the Distributed Annotation System. BMC Bioinformatics, 2008, 9, S3.	1.2	87
88	The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics, 2005, 21, 1301-1303.	1.8	78
89	Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics, 2013, 14, 327.	1.2	74
90	Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. Journal of Food Science, 2020, 85, 455-464.	1.5	72

#	Article	IF	CITATIONS
91	A catalogue of 1,167 genomes from the human gut archaeome. Nature Microbiology, 2022, 7, 48-61.	5.9	72
92	RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Research, 2011, 39, 5845-5852.	6.5	71
93	The PepSY domain: a regulator of peptidase activity in the microbial environment?. Trends in Biochemical Sciences, 2004, 29, 169-172.	3.7	68
94	Integrating sequence and structural biology with DAS. BMC Bioinformatics, 2007, 8, 333.	1.2	68
95	RNAcentral: A vision for an international database of RNA sequences. Rna, 2011, 17, 1941-1946.	1.6	67
96	Members of the immunoglobulin superfamily in bacteria. Protein Science, 1996, 5, 1939-1941.	3.1	66
97	The RNA WikiProject: Community annotation of RNA families. Rna, 2008, 14, 2462-2464.	1.6	66
98	Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genomics, 2020, 21, 408.	1.2	65
99	Identifying Protein Domains with the Pfam Database. Current Protocols in Bioinformatics, 2008, 23, Unit 2.5.	25.8	61
100	HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes. Nucleic Acids Research, 2016, 44, D604-D609.	6.5	60
101	Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors. Bioinformatics, 2009, 25, 159-162.	1.8	59
102	Biocurators and Biocuration: surveying the 21st century challenges. Database: the Journal of Biological Databases and Curation, 2012, 2012, bar059-bar059.	1.4	59
103	Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nature Structural and Molecular Biology, 2021, 28, 210-219.	3.6	59
104	Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biology, 2020, 21, 244.	3.8	58
105	R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nature Communications, 2021, 12, 3494.	5.8	58
106	Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nature Microbiology, 2022, 7, 169-179.	5.9	58
107	COVID-19 pandemic reveals the peril of ignoring metadata standards. Scientific Data, 2020, 7, 188.	2.4	56
108	Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder. PLoS ONE, 2011, 6, e19011.	1.1	54

#	Article	IF	CITATIONS
109	Structure of the <i>Escherichia coli</i> ProQ RNA-binding protein. Rna, 2017, 23, 696-711.	1.6	50
110	Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. Journal of Experimental Medicine, 2017, 214, 1111-1128.	4.2	50
111	SCOOP: a simple method for identification of novel protein superfamily relationships. Bioinformatics, 2007, 23, 809-814.	1.8	49
112	Enhanced protein domain discovery by using language modeling techniques from speech recognition. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4516-4520.	3.3	47
113	The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences. Bioinformatics, 2020, 36, 2636-2642.	1.8	47
114	Toward unrestricted use of public genomic data. Science, 2019, 363, 350-352.	6.0	45
115	Reuse of structural domain–domain interactions in protein networks. BMC Bioinformatics, 2007, 8, 259.	1.2	44
116	How to use the <scp><i>MEROPS</i></scp> database and website to help understand peptidase specificity. Protein Science, 2021, 30, 83-92.	3.1	44
117	The metagenomic data life-cycle: standards and best practices. GigaScience, 2017, 6, 1-11.	3.3	42
118	Unifying the known and unknown microbial coding sequence space. ELife, 2022, 11, .	2.8	41
119	Distant homology recognition using structural classification of proteins. , 1997, 29, 105-112.		40
120	Using the MEROPS Database for Proteolytic Enzymes and Their Inhibitors and Substrates. Current Protocols in Bioinformatics, 2014, 48, 1.25.1-33.	25.8	39
121	AntiFam: a tool to help identify spurious ORFs in protein annotation. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas003-bas003.	1.4	38
122	Pfam. Methods in Molecular Biology, 2007, 396, 43-58.	0.4	38
123	UniProt-DAAC: domain architecture alignment and classification, a new method for automatic functional annotation in UniProtKB. Bioinformatics, 2016, 32, 2264-2271.	1.8	37
124	Ten Simple Rules for Editing Wikipedia. PLoS Computational Biology, 2010, 6, e1000941.	1.5	36
125	Escherichia coli RNA polymerase core and holoenzyme structures. EMBO Journal, 2000, 19, 6833-6844.	3.5	35
126	Visualizing profile-profile alignment: pairwise HMM logos. Bioinformatics, 2005, 21, 2912-2913.	1.8	35

#	Article	IF	CITATIONS
127	ProServer: a simple, extensible Perl DAS server. Bioinformatics, 2007, 23, 1568-1570.	1.8	34
128	Identifying accurate metagenome and amplicon software via a meta-analysis of sequence to taxonomy benchmarking studies. PeerJ, 2019, 7, e6160.	0.9	34
129	The European Bioinformatics Institute (EMBL-EBI) in 2021. Nucleic Acids Research, 2022, 50, D11-D19.	6.5	34
130	Modifier Effects between Regulatory and Protein-Coding Variation. PLoS Genetics, 2008, 4, e1000244.	1.5	33
131	Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Molecular Systems Biology, 2021, 17, e9880.	3.2	33
132	Bacterial Pleckstrin Homology Domains: A Prokaryotic Origin for the PH Domain. Journal of Molecular Biology, 2010, 396, 31-46.	2.0	32
133	Towards BioDBcore: a community-defined information specification for biological databases. Nucleic Acids Research, 2011, 39, D7-D10.	6.5	32
134	Making your database available through Wikipedia: the pros and cons. Nucleic Acids Research, 2012, 40, D9-D12.	6.5	31
135	Towards BioDBcore: a community-defined information specification for biological databases. Database: the Journal of Biological Databases and Curation, 2011, 2011, baq027-baq027.	1.4	30
136	Origins of peptidases. Biochimie, 2019, 166, 4-18.	1.3	30
137	Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome, 2019, 7, 78.	4.9	30
138	A member of the immunoglobulin superfamily in bacteriophage T4. Virus Genes, 1997, 14, 163-165.	0.7	28
139	Tandem domain swapping: determinants of multidomain protein misfolding. Current Opinion in Structural Biology, 2019, 58, 97-104.	2.6	28
140	Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes. Nucleic Acids Research, 2019, 47, D564-D572.	6.5	27
141	Ten simple rules to make your computing more environmentally sustainable. PLoS Computational Biology, 2021, 17, e1009324.	1.5	27
142	Priorities for ocean microbiome research. Nature Microbiology, 2022, 7, 937-947.	5.9	27
143	Novel protein domains and motifs in the marine planctomycete Rhodopirellula baltica. FEMS Microbiology Letters, 2004, 236, 333-340.	0.7	25
144	The yeast noncoding RNA interaction network. Rna, 2017, 23, 1479-1492.	1.6	25

#	Article	IF	CITATIONS
145	Recovering prokaryotic genomes from host-associated, short-read shotgun metagenomic sequencing data. Nature Protocols, 2021, 16, 2520-2541.	5.5	25
146	Experience using web services for biological sequence analysis. Briefings in Bioinformatics, 2008, 9, 493-505.	3.2	24
147	Outline structures for the extracellular domains of the fibroblast growth factor receptors. Nature Structural and Molecular Biology, 1995, 2, 1068-1074.	3.6	23
148	Domain atrophy creates rare cases of functional partial protein domains. Genome Biology, 2015, 16, 88.	3.8	23
149	The challenge of increasing Pfam coverage of the human proteome. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat023.	1.4	22
150	TreeGrafter: phylogenetic tree-based annotation of proteins with Gene Ontology terms and other annotations. Bioinformatics, 2019, 35, 518-520.	1.8	22
151	Acetylation of Surface Carbohydrates in Bacterial Pathogens Requires Coordinated Action of a Two-Domain Membrane-Bound Acyltransferase. MBio, 2020, 11, .	1.8	22
152	Microbiota Characterization of Agricultural Green Waste-Based Suppressive Composts Using Omics and Classic Approaches. Agriculture (Switzerland), 2020, 10, 61.	1.4	21
153	Identifying Protein Domains with the Pfam Database. Current Protocols in Bioinformatics, 2003, 1, 2.5.1-2.5.19.	25.8	20
154	GO annotation in InterPro: why stability does not indicate accuracy in a sea of changing annotations. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw027.	1.4	19
155	Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes. Genome Biology and Evolution, 2021, 13, .	1.1	19
156	Enhanced protein domain discovery using taxonomy. BMC Bioinformatics, 2004, 5, 56.	1.2	18
157	Eleven quick tips to build a usable REST API for life sciences. PLoS Computational Biology, 2018, 14, e1006542.	1.5	18
158	ELIXIRâ€EXCELERATE: establishing Europe's data infrastructure for the life science research of the future. EMBO Journal, 2021, 40, e107409.	3.5	18
159	An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities. Scientific Reports, 2021, 11, 10590.	1.6	17
160	Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources. F1000Research, 2016, 5, 160.	0.8	16
161	DASMI: exchanging, annotating and assessing molecular interaction data. Bioinformatics, 2009, 25, 1321-1328.	1.8	15
162	Defining the remarkable structural malleability of a bacterial surface protein Rib domain implicated in infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26540-26548.	3.3	15

#	Article	IF	CITATIONS
163	Solution structure of human myeloid-derived growth factor suggests a conserved function in the endoplasmic reticulum. Nature Communications, 2019, 10, 5612.	5.8	15
164	Periscope Proteins are variable-length regulators of bacterial cell surface interactions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
165	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	1.5	13
166	Genome3D: integrating a collaborative data pipeline to expand the depth and breadth of consensus protein structure annotation. Nucleic Acids Research, 2020, 48, D314-D319.	6.5	13
167	Pfam: the protein families database. , 2005, , .		12
168	The crystal structure of a bacterial Sufuâ€like protein defines a novel group of bacterial proteins that are similar to the Nâ€ŧerminal domain of human Sufu. Protein Science, 2010, 19, 2131-2140.	3.1	12
169	Gene Unprediction with Spurio: A tool to identify spurious protein sequences. F1000Research, 2018, 7, 261.	0.8	11
170	The Ensembl COVID-19 resource: ongoing integration of public SARS-CoV-2 data. Nucleic Acids Research, 2022, 50, D765-D770.	6.5	10
171	The structure of Jann_2411 (DUF1470) from <i>Jannaschia</i> sp. at 1.45â€Ã resolution reveals a new fold (the ABATE domain) and suggests its possible role as a transcription regulator. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1198-1204.	0.7	9
172	The structure of BVU2987 fromBacteroides vulgatusreveals a superfamily of bacterial periplasmic proteins with possible inhibitory function. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1265-1273.	0.7	8
173	LUD, a new protein domain associated with lactate utilization. BMC Bioinformatics, 2013, 14, 341.	1.2	8
174	ISCB Computational Biology Wikipedia Competition. PLoS Computational Biology, 2013, 9, e1003242.	1.5	8
175	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	1.4	8
176	ELIXIR pilot action: Marine metagenomics – towards a domain specific set of sustainable services. F1000Research, 2017, 6, 70.	0.8	8
177	A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae. Microbiome, 2022, 10, 43.	4.9	8
178	Discovery of fibrillar adhesins across bacterial species. BMC Genomics, 2021, 22, 550.	1.2	7
179	The structure of pyogenecin immunity protein, a novel bacteriocin-like immunity protein from Streptococcus pyogenes. BMC Structural Biology, 2009, 9, 75.	2.3	6
180	The complexity, challenges and benefits of comparing two transporter classification systems in TCDB and Pfam. Briefings in Bioinformatics, 2015, 16, 865-872.	3.2	6

#	Article	IF	CITATIONS
181	TADOSS: computational estimation of tandem domain swap stability. Bioinformatics, 2019, 35, 2507-2508.	1.8	6
182	Exploring Nonâ€Coding RNAs in RNAcentral. Current Protocols in Bioinformatics, 2020, 71, e104.	25.8	6
183	The SHOCT Domain: A Widespread Domain Under-Represented in Model Organisms. PLoS ONE, 2013, 8, e57848.	1.1	6
184	Large-Scale Discovery of Microbial Fibrillar Adhesins and Identification of Novel Members of Adhesive Domain Families. Journal of Bacteriology, 2022, 204, .	1.0	6
185	<i>Caenorhabditis elegans</i> AF4/FMR2 Family Homolog <i>affl-2</i> Regulates Heat-Shock-Induced Gene Expression. Genetics, 2020, 215, 1039-1054.	1.2	5
186	The thrombospondin module 1 domain of the matricellular protein CCN3 shows an atypical disulfide pattern and incomplete CWR layers. Acta Crystallographica Section D: Structural Biology, 2020, 76, 124-134.	1.1	5
187	Determination of Escherichia coli RNA Polymerase Structure by Single Particle Cryoelectron Microscopy. Methods in Enzymology, 2003, 370, 24-42.	0.4	4
188	Conformational Changes of Escherichia coli ï∱54-RNA-Polymerase upon Closed–Promoter Complex Formation. Journal of Molecular Biology, 2005, 354, 201-205.	2.0	4
189	Metagenomics approach for Polymyxa betae genome assembly enables comparative analysis towards deciphering the intracellular parasitic lifestyle of the plasmodiophorids. Genomics, 2022, 114, 9-22.	1.3	4
190	The C-Terminal 12 Amino Acids of Ï,N Are Required for Structure and Function. Archives of Biochemistry and Biophysics, 1999, 371, 234-240.	1.4	3
191	The YARHG Domain: An Extracellular Domain in Search of a Function. PLoS ONE, 2012, 7, e35575.	1.1	3
192	Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila. BMC Bioinformatics, 2013, 14, 265.	1.2	3
193	3DPatch: fast 3D structure visualization with residue conservation. Bioinformatics, 2019, 35, 332-334.	1.8	2
194	The first structure in a family of peptidase inhibitors reveals an unusual Ig-like fold. F1000Research, 2013, 2, 154.	0.8	2
195	Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis. BMC Bioinformatics, 2014, 15, 75.	1.2	1
196	Rapid identification of novel protein families using similarity searches. F1000Research, 2018, 7, 1975.	0.8	1
197	Navigating bacterial taxonomy in a world of unchartered microbial organisms , 2021, , 179-197.		0
198	A Comprehensive Analysis of the Global Human Gut Archaeome from a Thousand Genome Catalogue. SSRN Electronic Journal, 0, , .	0.4	0