
Namal Piyantha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmentally friendly adsorbent derived from rock melon skin for effective removal of toxic brilliant green dye: linear versus non-linear analyses. International Journal of Environmental Analytical Chemistry, 2023, 103, 4904-4923.	1.8	12
2	Inhibitive Action of Selected Model Compounds of Eugenol on Mild Steel Corrosion in Salty Medium. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 412-421.	0.3	0
3	Effective and Simple NaOH-Modification Method to Remove Methyl Violet Dye via Ipomoea aquatica Roots. Adsorption Science and Technology, 2021, 2021, 1-12.	1.5	25
4	Chemical characteristics of wet precipitation at Peradeniya in Sri Lanka. Environmental Monitoring and Assessment, 2021, 193, 14.	1.3	5
5	Removal of textile dyes from industrial effluents using burnt brick pieces: adsorption isotherms, kinetics and desorption. SN Applied Sciences, 2020, 2, 1.	1.5	12
6	Source apportionment of rainwater chemical composition in wet precipitation at Kelaniya in Sri Lanka. Air Quality, Atmosphere and Health, 2020, 13, 1497-1504.	1.5	13
7	Risk assessment and source apportionment of wet bulk deposition in three typical sites of Gampaha District, Sri Lanka. SN Applied Sciences, 2020, 2, 1.	1.5	9
8	Adsorption of phosphates from water by two polymer-silicate composites. Bioremediation Journal, 2020, 24, 231-250.	1.0	0
9	Trace Metal Composition of Bulk Precipitation in Selected Locations of Kandy District, Sri Lanka. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	5
10	Atmospheric chemical composition of bulk deposition at two geographically distinct locations in Sri Lanka. Environmental Monitoring and Assessment, 2020, 192, 452.	1.3	7
11	Biosorption of Cr(III) and Cr(VI) species on NaOH-modified peel of Artocarpus nobilis fruit. 1. Investigation of kinetics. Applied Water Science, 2020, 10, 1.	2.8	12
12	Irreversible sorption of Pb(II) from aqueous solution on breadfruit peel to mitigate environmental pollution problems. Water Science and Technology, 2019, 80, 2241-2249.	1.2	5
13	Artocarpus odoratissimus Leaves as an Eco-friendly Adsorbent for the Removal of Toxic Rhodamine B Dye in Aqueous Solution: Equilibrium Isotherm, Kinetics, Thermodynamics and Regeneration Studies. Arabian Journal for Science and Engineering, 2018, 43, 6011-6020.	1.7	27
14	Biosorption of cationic dyes on breadfruit (Artocarpus altilis) peel and core. Applied Water Science, 2018, 8, 1.	2.8	23
15	Sodium hydroxide modified rice husk for enhanced removal of copper ions. Water Science and Technology, 2018, 78, 1615-1623.	1.2	3
16	A superb modified new adsorbent, Artocarpus odoratissimus leaves, for removal of cationic methyl violet 2B dye. Environmental Earth Sciences, 2016, 75, 1.	1.3	17
17	Utilizing <i>Artocarpus altilis</i> (breadfruit) skin for the removal of malachite green: isotherm, kinetics, regeneration, and column studies. Desalination and Water Treatment, 2016, 57, 16601-16610.	1.0	14
18	Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies. Environmental Earth Sciences, 2016, 75, 1.	1.3	41

NAMAL PIYANTHA

#	Article	IF	CITATIONS
19	Adsorption behaviour of Cr(VI) by Muthurajawela peat. Desalination and Water Treatment, 2016, 57, 16592-16600.	1.0	8
20	<i>Artocarpus camansi</i> Blanco (Breadnut) core as low-cost adsorbent for the removal of methylene blue: equilibrium, thermodynamics, and kinetics studies. Desalination and Water Treatment, 2016, 57, 5673-5685.	1.0	23
21	Investigation of the sorption characteristics of water lettuce (WL) as a potential low-cost biosorbent for the removal of methyl violet 2B. Desalination and Water Treatment, 2016, 57, 8319-8329.	1.0	14
22	Adsorption of crystal violet dye from aqueous solution onto chemically treated <i>Artocarpus odoratissimus</i> skin: equilibrium, thermodynamics, and kinetics studies. Desalination and Water Treatment, 2016, 57, 10246-10260.	1.0	30
23	Artocarpus altilis (breadfruit) skin as a potential low-cost biosorbent for the removal of crystal violet dye: equilibrium, thermodynamics and kinetics studies. Environmental Earth Sciences, 2015, 73, 3239-3247.	1.3	58
24	Removal behavior of peat collected from Brunei Darussalam for Pb(II) ions from aqueous solution: equilibrium isotherm, thermodynamics, kinetics and regeneration studies. Environmental Earth Sciences, 2015, 74, 2541-2551.	1.3	14
25	Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances, 2015, 5, 34603-34615.	1.7	51
26	Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalination and Water Treatment, 2015, 55, 664-677.	1.0	52
27	Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalination and Water Treatment, 2015, 54, 2592-2600.	1.0	42
28	Biosorption and Desorption of Lead(II) by <i>Hydrilla verticillata</i> . Bioremediation Journal, 2014, 18, 192-203.	1.0	30
29	Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environmental Earth Sciences, 2014, 72, 2263-2277.	1.3	49
30	Adsorption Behavior of Methyl Violet 2B Using Duckweed: Equilibrium and Kinetics Studies. Arabian Journal for Science and Engineering, 2014, 39, 6757-6765.	1.1	32
31	Biosorption of Cr(III) and Cr(VI) species from aqueous solution by Cabomba caroliniana: kinetic and equilibrium study. Environmental Earth Sciences, 2013, 70, 661-671.	1.3	25
32	Interaction of Cr(VI) species with thermally treated brick clay. Environmental Science and Pollution Research, 2011, 18, 75-81.	2.7	12
33	Investigation of kinetics of Cr(VI)–fired brick clay interaction. Journal of Hazardous Materials, 2011, 188, 193-197.	6.5	18
34	Removal of blue colouration from industrial effluents by burnt brick particles. Journal of the National Science Foundation of Sri Lanka, 2010, 28, 287.	0.1	1
35	Solvent extraction followed by ultraviolet detection for investigation of tetramethylthiuram disulfide at soil-water interface. International Journal of Environmental Science and Technology, 2008, 5, 547-554.	1.8	9
36	Removal of Sulfate, Phosphate and Colored Substances in Wastewater Effluents using Feldspar. Water Resources Management, 2000, 14, 417-434.	1.9	24

NAMAL PIYANTHA

#	Article	IF	CITATIONS
37	<i>Artocarpus odoratissimus</i> skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination and Water Treatment, 0, , 1-12.	1.0	17
38	Characterization of peat samples collected from Brunei Darussalam and their evaluation as potential adsorbents for Cu(II) removal from aqueous solution. Desalination and Water Treatment, 0, , 1-15.	1.0	4
39	Enhancement of adsorption characteristics of Methyl violet 2B dye through NaOH treatment of Cucumis melo var. cantalupensis (rock melon) skin. , 0, 180, 336-348.		5
40	Converting Hylocereus undatus (white dragon fruit) peel waste into a useful potential adsorbent for the removal of toxic Congo red dye. , 0, 185, 307-317.		8
41	Biosorption of heavy metal ions on peel of Artocarpus nobilis fruit: 2. Improvement of biosorption capacities of Ni(II) through different modifications. , 0, 185, 226-236.		3
42	Synthesis, characterization, and textile dye adsorption studies of a kaolin-based polymer layer silicate composite. International Journal of Environmental Science and Technology, 0, , 1.	1.8	0