Sudakar Padmanaban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recyclable and efficient heterogenized Rh and Ir catalysts for the transfer hydrogenation of carbonyl compounds in aqueous medium. Green Chemistry, 2016, 18, 6456-6461.	9.0	45
2	Copolymerization of Epichlorohydrin and CO ₂ Using Zinc Clutarate: An Additional Application of ZnGA in Polycarbonate Synthesis. Macromolecular Rapid Communications, 2016, 37, 788-793.	3.9	36
3	Recyclable Covalent Triazine Framework-based Ru Catalyst for Transfer Hydrogenation of Carbonyl Compounds in Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 8893-8899.	6.7	25
4	Acid-mediated surface etching of a nano-sized metal-organic framework for improved reactivity in the fixation of CO2 into polymers. Journal of Industrial and Engineering Chemistry, 2019, 71, 336-344.	5.8	23
5	Surface Modification of a MOF-based Catalyst with Lewis Metal Salts for Improved Catalytic Activity in the Fixation of CO2 into Polymers. Catalysts, 2019, 9, 892.	3.5	19
6	Direct Heterogenization of the Ru-Macho Catalyst for the Chemoselective Hydrogenation of α,β-Unsaturated Carbonyl Compounds. Inorganic Chemistry, 2021, 60, 6881-6888.	4.0	18
7	An Efficient and Practical System for the Synthesis of <i>N</i> , <i>N</i> â€Dimethylformamide by CO ₂ Hydrogenation using a Heterogeneous Ru Catalyst: From Batch to Continuous Flow. ChemSusChem, 2020, 13, 1735-1739.	6.8	16
8	NNN Pincerâ€functionalized Porous Organic Polymer Supported Ru(III) as a Heterogeneous Catalyst for Levulinic Acid Hydrogenation to γâ€Valerolactone. ChemCatChem, 2021, 13, 695-703.	3.7	15
9	A Zn-MOF-Catalyzed Terpolymerization of Propylene Oxide, CO2, and β-butyrolactone. Catalysts, 2018, 8, 393.	3.5	12
10	Chemoselectivity in Coupling of Azides with Thioacids in Solution-Phase and Solvent-Free Conditions. Synthetic Communications, 2013, 43, 668-680.	2.1	8
11	Overexpression and Functional Stabilization of Recombinant Human Lysophosphatidic Acid Receptor 1 Using an Amphiphatic Polymer. Bulletin of the Korean Chemical Society, 2017, 38, 63-69.	1.9	8
12	Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. Journal of Industrial and Engineering Chemistry, 2021, 94, 361-367.	5.8	7
13	Size-tunable Synthesis of Silver Nanobelts Using a Polyaniline Derived Polymer as a Template. Scientific Reports, 2017, 7, 44796.	3.3	6
14	Revisiting the Palladium-Catalyzed Carbonylation of Allyl Alcohol: Mechanistic Insight and Improved Catalytic Efficiency. Organometallics, 2020, 39, 1881-1886.	2.3	6
15	Nickel-Catalyzed NO Group Transfer Coupled with NO _{<i>x</i>} Conversion. Journal of the American Chemical Society, 2022, 144, 4585-4593.	13.7	6
16	Reductive Carbonylation of Nitroarenes Using a Heterogenized Phen-Pd Catalyst. Inorganic Chemistry, 2022, 61, 1552-1561.	4.0	5
17	Eco-friendly upconversion of limestone into value-added calcium formate. Green Chemistry, 2020, 22, 4995-5001.	9.0	1