Kavita Y Sarin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/173723/publications.pdf Version: 2024-02-01

ΚΛΥΙΤΛ Υ ΟΛΟΙΝ

#	Article	IF	CITATIONS
1	Clonal replacement of tumor-specific T cells following PD-1 blockade. Nature Medicine, 2019, 25, 1251-1259.	30.7	974
2	Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature, 2005, 436, 1048-1052.	27.8	383
3	Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma. Cancer Cell, 2015, 27, 342-353.	16.8	337
4	Genomic Analysis of Smoothened Inhibitor Resistance in Basal Cell Carcinoma. Cancer Cell, 2015, 27, 327-341.	16.8	316
5	TERT Promotes Epithelial Proliferation through Transcriptional Control of a Myc- and Wnt-Related Developmental Program. PLoS Genetics, 2008, 4, e10.	3.5	283
6	IFNÎ ³ -Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170, 127-141.e15.	28.9	140
7	Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12048.	12.8	117
8	An Investigator-Initiated Open-Label Trial of Sonidegib in Advanced Basal Cell Carcinoma Patients Resistant to Vismodegib. Clinical Cancer Research, 2016, 22, 1325-1329.	7.0	115
9	A Subset of Mesotheliomas With Improved Survival Occurring in Carriers of <i>BAP1</i> and Other Germline Mutations. Journal of Clinical Oncology, 2018, 36, 3485-3494.	1.6	104
10	Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nature Medicine, 2012, 18, 111-119.	30.7	103
11	Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nature Communications, 2016, 7, 12510.	12.8	94
12	Pembrolizumab for advanced basal cell carcinoma: An investigator-initiated, proof-of-concept study. Journal of the American Academy of Dermatology, 2019, 80, 564-566.	1.2	83
13	Effects of Combined Treatment With Arsenic Trioxide and Itraconazole in Patients With Refractory Metastatic Basal Cell Carcinoma. JAMA Dermatology, 2016, 152, 452.	4.1	82
14	Noncanonical hedgehog pathway activation through SRF–MKL1 promotes drug resistance in basal cell carcinomas. Nature Medicine, 2018, 24, 271-281.	30.7	82
15	Automated Classification of Skin Lesions: From Pixels to Practice. Journal of Investigative Dermatology, 2018, 138, 2108-2110.	0.7	76
16	Two-stage genome-wide association study identifies a novel susceptibility locus associated with melanoma. Oncotarget, 2017, 8, 17586-17592.	1.8	61
17	Mosaic Activating RAS Mutations in Nevus Sebaceus and Nevus Sebaceus Syndrome. Journal of Investigative Dermatology, 2013, 133, 824-827.	0.7	55
18	Familial skin cancer syndromes. Journal of the American Academy of Dermatology, 2016, 74, 423-434.	1.2	54

#	Article	lF	CITATIONS
19	Diagnostic Distinction of Malignant Melanoma and Benign Nevi by a Gene Expression Signature and Correlation to Clinical Outcomes. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1107-1113.	2.5	53
20	Combined inhibition of atypical PKC and histone deacetylase 1 is cooperative in basal cell carcinoma treatment. JCI Insight, 2017, 2, .	5.0	49
21	Squamous Change in Basal-Cell Carcinoma with Drug Resistance. New England Journal of Medicine, 2015, 373, 1079-1082.	27.0	47
22	AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nature Communications, 2020, 11, 5079.	12.8	47
23	Familial skin cancer syndromes. Journal of the American Academy of Dermatology, 2016, 74, 437-451.	1.2	46
24	Aging, Graying and Loss of Melanocyte Stem Cells. Stem Cell Reviews and Reports, 2007, 3, 212-217.	5.6	45
25	Activating <i>HRAS</i> Mutation in Agminated Spitz Nevi Arising in a Nevus Spilus. JAMA Dermatology, 2013, 149, 1077.	4.1	45
26	Postzygotic Mutations in Beta-Actin Are Associated with Becker's Nevus and Becker's Nevus Syndrome. Journal of Investigative Dermatology, 2017, 137, 1795-1798.	0.7	38
27	Loss of Primary Cilia Drives Switching from Hedgehog to Ras/MAPK Pathway in Resistant Basal Cell Carcinoma. Journal of Investigative Dermatology, 2019, 139, 1439-1448.	0.7	38
28	A survey of direct-to-consumer teledermatology services available to US patients: Explosive growth, opportunities and controversy. Journal of Telemedicine and Telecare, 2017, 23, 19-25.	2.7	36
29	Basosquamous Carcinoma: Controversy, Advances, and Future Directions. Dermatologic Surgery, 2017, 43, 23-31.	0.8	32
30	Activating HRAS Mutation in Nevus Spilus. Journal of Investigative Dermatology, 2014, 134, 1766-1768.	0.7	31
31	Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma. Nature Communications, 2020, 11, 820.	12.8	30
32	TGFβ, Fibronectin and Integrin α5β1 Promote Invasion in Basal Cell Carcinoma. Journal of Investigative Dermatology, 2018, 138, 2432-2442.	0.7	29
33	Incidence ratio of basal cell carcinoma to squamous cell carcinoma equalizes with age. Journal of the American Academy of Dermatology, 2017, 76, 353-354.	1.2	28
34	Early Detection of Adverse Drug Reactions in Social Health Networks: A Natural Language Processing Pipeline for Signal Detection. JMIR Public Health and Surveillance, 2019, 5, e11264.	2.6	26
35	Genetic Mutations Underlying Phenotypic Plasticity in Basosquamous Carcinoma. Journal of Investigative Dermatology, 2019, 139, 2263-2271.e5.	0.7	24
36	Hidradenitis suppurativa in patients of color is associated with increased disease severity and healthcare utilization: A retrospective analysis of 2 U.S. cohorts. JAAD International, 2021, 3, 42-52.	2.2	24

#	Article	IF	CITATIONS
37	Frequent basal cell cancer development is a clinical marker for inherited cancer susceptibility. JCI Insight, 2018, 3, .	5.0	23
38	Melanoma risk prediction using a multilocus genetic risk score in the Women's Health Initiative cohort. Journal of the American Academy of Dermatology, 2018, 79, 36-41.e10.	1.2	22
39	Topical Itraconazole for the Treatment of Basal Cell Carcinoma in Patients With Basal Cell Nevus Syndrome or High-Frequency Basal Cell Carcinomas. JAMA Dermatology, 2019, 155, 1078.	4.1	21
40	Mutations in the Kinetochore Gene KNSTRN in Basal Cell Carcinoma. Journal of Investigative Dermatology, 2015, 135, 3197-3200.	0.7	20
41	Genomic Stability in Syndromic Basal CellÂCarcinoma. Journal of Investigative Dermatology, 2018, 138, 1044-1051.	0.7	20
42	Inverse Relationship between Vitiligo-Related Genes and Skin Cancer Risk. Journal of Investigative Dermatology, 2018, 138, 2072-2075.	0.7	20
43	Rolling the Genetic Dice: Neutral and Deleterious Smoothened Mutations in Drug-Resistant Basal Cell Carcinoma. Journal of Investigative Dermatology, 2015, 135, 2138-2141.	0.7	18
44	Genetic diseases associated with an increased risk of skin cancer development in childhood. Current Opinion in Pediatrics, 2017, 29, 426-433.	2.0	17
45	Azathioprine and risk of multiple keratinocyte cancers. Journal of the American Academy of Dermatology, 2018, 78, 27-28.e1.	1.2	17
46	Phenotypic heterogeneity of neurofibromatosis type 1 in a large international registry. JCI Insight, 2020, 5, .	5.0	17
47	Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment. Science Advances, 2022, 8, .	10.3	16
48	<p>From Clinical Phenotype to Genotypic Modelling: Incidence and Prevalence of Recessive Dystrophic Epidermolysis Bullosa (RDEB)</p> . Clinical, Cosmetic and Investigational Dermatology, 2019, Volume 12, 933-942.	1.8	15
49	Comparing online engagement and academic impact of dermatology research: An Altmetric Attention Score and PlumX Metrics analysis. Journal of the American Academy of Dermatology, 2020, 83, 648-650.	1.2	15
50	Loss-of-Function Variants in the Tumor-Suppressor Gene <i>PTPN14</i> Confer Increased Cancer Risk. Cancer Research, 2021, 81, 1954-1964.	0.9	15
51	Identification of Alpha-Adrenergic Agonists asÂPotential Therapeutic Agents for Dermatomyositis through Drug-Repurposing Using Public Expression Datasets. Journal of Investigative Dermatology, 2016, 136, 1517-1520.	0.7	14
52	Direct-to-consumer teledermatology services for pediatric patients: Room for improvement. Journal of the American Academy of Dermatology, 2016, 75, 887-888.	1.2	14
53	Association study of genetic variation in <scp>DNA</scp> repair pathway genes and risk of basal cell carcinoma. International Journal of Cancer, 2017, 141, 952-957.	5.1	14
54	Sexual and Gender Minority Curricula Within US Dermatology Residency Programs. JAMA Dermatology, 2020, 156, 593.	4.1	14

#	Article	IF	CITATIONS
55	Review of the Molecular Genetics of Basal Cell Carcinoma; Inherited Susceptibility, Somatic Mutations, and Targeted Therapeutics. Cancers, 2021, 13, 3870.	3.7	14
56	Tumor-Derived Suppressor of Fused Mutations Reveal Hedgehog Pathway Interactions. PLoS ONE, 2016, 11, e0168031.	2.5	13
57	Smoothened Inhibitors in Sonic Hedgehog Subgroup Medulloblastoma. Journal of Clinical Oncology, 2015, 33, 2692-2694.	1.6	12
58	Dermatomyositis associated with capecitabine in the setting of malignancy. Journal of the American Academy of Dermatology, 2014, 70, e47-e48.	1.2	11
59	Association between genetic variation within vitamin D receptorâ€DNA binding sites and risk of basal cell carcinoma. International Journal of Cancer, 2017, 140, 2085-2091.	5.1	11
60	Hyperhidrosis affects quality of life in hidradenitis suppurativa: A prospective analysis. Journal of the American Academy of Dermatology, 2020, 82, 753-754.	1.2	11
61	Gamification improves melanoma visual identification among high school students: Results from a randomized study. Pediatric Dermatology, 2020, 37, 752-753.	0.9	11
62	Alterations of the MEK/ERK, BMP, and Wnt/β-catenin pathways detected in the blood of individuals with lymphatic malformations. PLoS ONE, 2019, 14, e0213872.	2.5	10
63	A phase 2, double-blinded, placebo-controlled trial of toll-like receptor 7/8/9 antagonist, IMO-8400, in dermatomyositis. Journal of the American Academy of Dermatology, 2021, 84, 1160-1162.	1.2	10
64	Characterization of comorbidity heterogeneity among 13,667 patients with hidradenitis suppurativa. JCI Insight, 2021, 6, .	5.0	10
65	Correlates of multiple basal cell carcinoma in a retrospective cohort study: Sex, histologic subtypes, and anatomic distribution. Journal of the American Academy of Dermatology, 2017, 77, 233-234.e2.	1.2	9
66	Detecting Chemotherapeutic Skin Adverse Reactions in Social Health Networks Using Deep Learning. JAMA Oncology, 2018, 4, 581.	7.1	9
67	Phase II Open-Label, Single-Arm Trial to Investigate the Efficacy and Safety of Topical Remetinostat Gel in Patients with Basal Cell Carcinoma. Clinical Cancer Research, 2021, 27, 4717-4725.	7.0	9
68	Angular compounding for speckle reduction in optical coherence tomography using geometric image registration algorithm and digital focusing. Scientific Reports, 2020, 10, 1893.	3.3	8
69	Emerging technologies for health information in dermatology: opportunities and drawbacks of web-based searches, social media, mobile applications, and direct-to-consumer genetic testing in patient care. Seminars in Cutaneous Medicine and Surgery, 2019, 38, E57-E63.	1.6	8
70	ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Science Alliance, 2022, 5, e202101353.	2.8	8
71	Assessment of Accuracy of Patient-Initiated Differential Diagnosis Generation by Google Reverse Image Searching. JAMA Dermatology, 2016, 152, 1164.	4.1	7
72	Factors influencing and modifying the decision to pursue genetic testing for skin cancer risk. Journal of the American Academy of Dermatology, 2017, 76, 829-835.e1.	1.2	7

#	Article	IF	CITATIONS
73	Transcriptomic Repositioning Analysis Identifies mTOR Inhibitor as Potential Therapy for Epidermolysis Bullosa Simplex. Journal of Investigative Dermatology, 2022, 142, 382-389.	0.7	7
74	Molecular Profiling to Diagnose a Case of Atypical Dermatomyositis. Journal of Investigative Dermatology, 2013, 133, 2796-2799.	0.7	6
75	Ways to Improve Care for LGBT Patients in Dermatology Clinics. Dermatologic Clinics, 2020, 38, 269-276.	1.7	5
76	Development of a core outcome set for basal cell carcinoma. Journal of the American Academy of Dermatology, 2022, 87, 573-581.	1.2	5
77	Treatment of Recalcitrant Eosinophilic Cellulitis With Adalimumab. Archives of Dermatology, 2012, 148, 990.	1.4	4
78	Invasive Melanoma in a Patient with Congenital Ichthyosiform Erythroderma. Pediatric Dermatology, 2017, 34, e35-e36.	0.9	4
79	Assessment of readability and content of patientâ€initiated google search results for epidermolysis bullosa. Pediatric Dermatology, 2019, 36, 1004-1006.	0.9	4
80	Identification of Atorvastatin for Moderate toÂSevere Hidradenitis through Drug Repositioning Using Public Gene ExpressionÂDatasets. Journal of Investigative Dermatology, 2018, 138, 1209-1212.	0.7	3
81	Referred by Google: mining Google Trends data to identify patterns in and correlates to searches for dermatological concerns and providers. British Journal of Dermatology, 2018, 178, 794-795.	1.5	3
82	Association of multiple primary melanomas with malignancy risk: a population-based analysis of the Surveillance, Epidemiology, and End Results Program database from 1973-2014. Journal of the American Academy of Dermatology, 2018, , .	1.2	3
83	Fitzpatrick phototype disparities in identification of cutaneous malignancies by Google Reverse Image. Journal of the American Academy of Dermatology, 2021, 84, 1415-1417.	1.2	3
84	Treatment of Cutaneous Squamous Cell Carcinoma With the Topical Histone Deacetylase Inhibitor Remetinostat. JAMA Dermatology, 2022, 158, 105.	4.1	3
85	Dermatologic applications of direct-to-consumer genomic analysis. Journal of the American Academy of Dermatology, 2014, 71, 993-995.	1.2	2
86	164 Frequent basal cell cancer development is a clinical marker for inherited cancer susceptibility. Journal of Investigative Dermatology, 2018, 138, S28.	0.7	2
87	Unique Tumor Heterogeneity Within a Single Locally Advanced Basal Cell Carcinoma Resulting in a Partial Response Despite Continuous Vismodegib Treatment. Dermatologic Surgery, 2019, 45, 608-610.	0.8	2
88	Prevalence and risk factors for high-frequency basal cell carcinoma in the United States. Journal of the American Academy of Dermatology, 2021, 84, 1493-1495.	1.2	2
89	Automated detection of skin reactions in epicutaneous patch testing using machine learning. British Journal of Dermatology, 2021, 185, 456-458.	1.5	2
90	Status and Recommendations for Incorporating Biomarkers for Cutaneous Neurofibromas Into Clinical Research. Neurology, 2021, 97, S42-S49.	1.1	2

#	Article	IF	CITATIONS
91	The digital age of melanoma management: detection and diagnostics. Melanoma Management, 2015, 2, 383-391.	0.5	1
92	Core skin DC signatures control immune tolerance to skin cancer and limit anti-tumor immunity. , 2015, 3, P205.		1
93	Health Cards by Google: dermatologist review of the inclusivity and utility of the medical search application. British Journal of Dermatology, 2017, 176, 1398-1400.	1.5	1
94	Biomarker discovery analysis: Alterations in p14, p16, p53, and BAP1 expression in nevi, cutaneous melanoma, and metastatic melanoma. Pigment Cell and Melanoma Research, 2019, 32, 474-478.	3.3	1
95	18811 Crowdfunding for the treatment of cutaneous malignancies: Trends, correlates, and money raised. Journal of the American Academy of Dermatology, 2020, 83, AB107.	1.2	1
96	Journal attitudes and outcomes of preprints in dermatology. British Journal of Dermatology, 2021, 185, 230-232.	1.5	1
97	Dermatology Advances Into an Era of Precision Medicine. JAMA Dermatology, 2021, 157, 770-772.	4.1	1
98	Patient Crowdfunding for the Treatment of Cutaneous Malignancies. Dermatologic Surgery, 2020, Publish Ahead of Print, 1012-1013.	0.8	1
99	Partnering with a senior living community to optimise teledermatology via full body skin screening during the COVIDâ€19 pandemic: A pilot programme. Skin Health and Disease, 0, , .	1.5	1
100	A Subdermal Source: Contact Dermatitis. American Journal of Medicine, 2015, 128, 578-581.	1.5	0
101	Genetic variants associate with systemic lupus erythematosus risk across ethnic groups. British Journal of Dermatology, 2017, 177, 620-621.	1.5	0
102	137 SRF/MRTF drive basal cell carcinoma growth through hedgehog pathway activation. Journal of Investigative Dermatology, 2017, 137, S23.	0.7	0
103	248 Early detection of chemotherapeutic skin toxicities in social health networks using deep learning. Journal of Investigative Dermatology, 2018, 138, S42.	0.7	0
104	221 BCC to SCC pathway switching during tumor evolution and the role of the primary cilium. Journal of Investigative Dermatology, 2018, 138, S37.	0.7	0
105	Response to Shih etÂal Journal of Investigative Dermatology, 2019, 139, 2385-2386.	0.7	0
106	533 Pembrolizumab with or without vismodegib for advanced basal cell carcinoma: An investigator-initiated, proof-of-concept study. Journal of Investigative Dermatology, 2019, 139, S92.	0.7	0
107	Prevalence of potentially allergenic ingredients in products labeled for eczema care. Journal of the American Academy of Dermatology, 2021, , .	1.2	0
108	691 Neutrophil and C5aR dynamics in hidradenitis suppurativa disease progression. Journal of Investigative Dermatology, 2021, 141, S120.	0.7	0

#	Article	IF	CITATIONS
109	487 Topical MEK inhibition as precision targeted chemoprevention. Journal of Investigative Dermatology, 2021, 141, S84.	0.7	0
110	Direct-to-consumer genetic risk scoring for melanoma improves adherence to sun-protective behaviors among increased-risk groups: Results from a prospective United States cohort study. Journal of the American Academy of Dermatology, 2021, 85, 1035-1038.	1.2	0
111	TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genetics, 2005, preprint, e10.	3.5	Ο
112	Abstract LB-B32: Modulation of the Hedgehog signaling pathway in models of basal cell carcinoma by ATP-competitive PKCi inhibitors. , 2018, , .		0