

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1736838/publications.pdf Version: 2024-02-01

Χυγλο Οι

#	Article	IF	CITATIONS
1	Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air. Journal of Loss Prevention in the Process Industries, 2015, 35, 224-231.	3.3	103
2	Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. Journal of the Energy Institute, 2017, 90, 544-555.	5.3	94
3	In Situ FTIR Study of Real-Time Changes of Active Groups during Oxygen-Free Reaction of Coal. Energy & Fuels, 2013, 27, 3130-3136.	5.1	69
4	Reaction pathways and cyclic chain model of free radicals during coal spontaneous combustion. Fuel, 2021, 293, 120436.	6.4	65
5	Controlled-release inhibitor for preventing the spontaneous combustion of coal. Natural Hazards, 2016, 82, 891-901.	3.4	57
6	An In Situ Testing Method for Analyzing the Changes of Active Groups in Coal Oxidation at Low Temperatures. Spectroscopy Letters, 2014, 47, 495-503.	1.0	54
7	Reaction pathways of hydroxyl groups during coal spontaneous combustion. Canadian Journal of Chemistry, 2016, 94, 494-500.	1.1	44
8	A rapid method for determining the R70 self-heating rate of coal. Thermochimica Acta, 2013, 571, 21-27.	2.7	41
9	Oxidation and Self-Reaction of Carboxyl Groups During Coal Spontaneous Combustion. Spectroscopy Letters, 2015, 48, 173-178.	1.0	40
10	Reaction Mechanism and Thermodynamic Properties of Aliphatic Hydrocarbon Groups during Coal Self-Heating. Energy & Fuels, 2018, 32, 10469-10477.	5.1	36
11	Changes in active functional groups during low-temperature oxidation of coal. Mining Science and Technology, 2010, 20, 35-40.	0.3	35
12	In situ FTIR study on real-time changes of active groups during lignite reaction under low oxygen concentration conditions. Journal of the Energy Institute, 2019, 92, 1557-1566.	5.3	32
13	The reburning thermal characteristics of residual structure of lignite pyrolysis. Fuel, 2020, 259, 116226.	6.4	26
14	Reaction activity and mechanism of R3-CH structure oxidation in coal self-heating. Fuel, 2021, 290, 119797.	6.4	22
15	Quantum chemistry calculation of reaction pathways of carboxyl groups during coal self-heating. Canadian Journal of Chemistry, 2017, 95, 824-829.	1.1	19
16	Characteristics of oxygen consumption of coal at programmed temperatures. Mining Science and Technology, 2010, 20, 372-377.	0.3	17
17	Reaction Mechanism of Aldehyde Groups during Coal Self-Heating. ACS Omega, 2020, 5, 23184-23192.	3.5	16
18	Thermogravimetric and infrared spectral analysis of candle coal pyrolysis under low-oxygen concentration. Thermochimica Acta, 2021, 696, 178840.	2.7	16

Χυγλο Qι

#	Article	IF	CITATIONS
19	ENVIRONMENTAL HAZARDS OF COAL FIRE AND THEIR PREVENTION IN CHINA. Environmental Engineering and Management Journal, 2013, 12, 1915-1919.	0.6	14
20	The competitive reaction mechanism between oxidation and pyrolysis consumption during lowâ€rank coal combustion at leanâ€oxygen conditions: A quantitative calculation based on thermogravimetric analyses. Canadian Journal of Chemical Engineering, 2018, 96, 2575-2585.	1.7	9
21	Influence of Temperature Change on the Change Law of Free Radicals in Coal. ACS Omega, 2021, 6, 33685-33693.	3.5	8
22	Gasification characteristics and thermodynamic analysis of ultra-lean oxygen oxidized lignite residues. Energy, 2022, 240, 122796.	8.8	7
23	Coupling Relation between the Location of Cross-Cut Negative Pressure and Injecting Nitrogen into Coal Mine Goaf. ACS Omega, 2021, 6, 8189-8198.	3.5	6
24	Reaction model and thermodynamic properties between sulfur-containing active groups and oxygen during coal self-heating. Canadian Journal of Chemistry, 2021, 99, 31-42.	1.1	4
25	An Environmentally Friendly Antioxidant Foamed Gel for Inhibiting Spontaneous Combustion of Coal. Combustion Science and Technology, 0, , 1-22.	2.3	2