Céline Rommevaux-Jestin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1736669/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prokaryote Communities at Active Chimney and <i>In Situ</i> Colonization Devices After a Magmatic Degassing Event (37°N MAR, EMSOâ€Azores Deepâ€6ea Observatory). Geochemistry, Geophysics, Geosystems, 2019, 20, 3065-3089.	2.5	6
2	Direct and indirect impact of the bacterial strain Pseudomonas aeruginosa on the dissolution of synthetic Fe(III)- and Fe(II)-bearing basaltic glasses. Chemical Geology, 2019, 523, 9-18.	3.3	14
3	Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 2017, 18, 145	5 1 -1482.	94
4	Travertines Associated With Hyperalkaline Springs: Evaluation As A Proxy For Paleoenvironmental Conditions And Sequestration of Atmospheric CO ₂ . Journal of Sedimentary Research, 2016, 86, 1328-1343.	1.6	13
5	First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history. Earth and Planetary Science Letters, 2016, 450, 96-107.	4.4	21
6	Biogeochemical insights into microbe–mineral–fluid interactions in hydrothermal chimneys using enrichment culture. Extremophiles, 2015, 19, 597-617.	2.3	20
7	Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge. Frontiers in Microbiology, 2015, 6, 1518.	3.5	48
8	Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin. Frontiers in Microbiology, 2013, 4, 250.	3.5	27
9	Segmentâ€scale and intrasegment lithospheric thickness and melt variations near the Andrew Bain megatransform fault and Marion hot spot: Southwest Indian Ridge, 25.5°E–35°E. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	4
10	Potential of Cathodoluminescence Microscopy and Spectroscopy for the Detection of Prokaryotic Cells on Minerals. Astrobiology, 2010, 10, 921-932.	3.0	2
11	Detection and phylogenetic identification of labeled prokaryotic cells on mineral surfaces using Scanning X-ray Microscopy. Chemical Geology, 2007, 240, 182-192.	3.3	9
12	Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	25
13	Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°30′E, 55°30′E and) Geophysics, Geosystems, 2004, 5, n/a-n/a.	Tj ETQq1 2.5	1 0.7843 64
14	Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	59
15	Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	68
16	Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to) Tj ETQq0 0 0	rgBT /Ove	erlgck 10 Tf

17	TOBI sidescan sonar imagery of the very slow-spreading Southwest Indian Ridge: evidence for along-axis magma distribution. Earth and Planetary Science Letters, 2002, 199, 81-95.	4.4	40
18	Focused volcanism and growth of a slow spreading segment (Mid-Atlantic Ridge, 35°N). Earth and Planetary Science Letters, 2001, 185, 211-224.	4.4	28

#	Article	IF	CITATIONS
19	The Southwest Indian Ridge between 49°15′E and 57°E: focused accretion and magma redistribution. Earth and Planetary Science Letters, 2001, 192, 303-317.	4.4	121
20	Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research, 1999, 104, 22825-22843.	3.3	169
21	A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwest Indian Ridge (15°30′E to 25°E). Earth and Planetary Science Letters, 1998, 161, 243-253.	4.4	68
22	Title is missing!. Marine Geophysical Researches, 1997, 19, 481-503.	1.2	46
23	Propagation of the Southwest Indian Ridge at the Rodrigues Triple Junction. Marine Geophysical Researches, 1997, 19, 553-567.	1.2	15
24	Three-dimensional inversion of marine magnetic anomalies: Implications for crustal accretion along the Mid-Atlantic Ridge (28ïį¼2?31ïį¼230? N). Marine Geophysical Researches, 1996, 18, 85-101.	1.2	39
25	The Mid-Atlantic Ridge between 29°N and 31°30′N in the last 10 Ma. Earth and Planetary Science Letters, 1995, 130, 45-55.	4.4	46
26	Temporal and spatial variations in crustal accretion along the Mid-Atlantic Ridge (29°-31°30′N) over the last 10 m.y.: Implications from a three-dimensional gravity study. Journal of Geophysical Research, 1995, 100, 17781-17794.	3.3	47
27	Three-dimensional gravity study of the Mid-Atlantic Ridge: Evolution of the segmentation between 28° and 29°N during the last 10 m.y Journal of Geophysical Research, 1994, 99, 3015-3029.	3.3	54
28	Ocean crust formation processes at very slow spreading centers: A model for the Mohns Ridge, near 72°N, based on magnetic, gravity, and seismic data. Journal of Geophysical Research, 1994, 99, 2995-3013.	3.3	51